

Hochauflösende Simulation von Konvektion im Schwarzwald: Fallstudien basierend auf Beobachtungen im Rahmen von VERTIKATOR und PRINCE

Jörg Trentmann, Britta Wecker, Heini Wernli, Ulrich Corsmeier, Jan Handwerker

Ziel:

- Verbesserung des Verständnisses der Prozesse, die zur Auslösung von Konvektion führen
- Untersuchungen der dynamischen und mikrophysikalischen Prozesse innerhalb konvektiver Systeme

Methode:

- Modellsimulationen mit dem DWD Lokal Modell (LM)
- Evaluierung der Modellergebnisse
- Bearbeitung der Fragen mit Hilfe der Modellsimulationen

- LM Version 3.20
- Räumliche Auflösung: 0.025 deg (ca. 2.8 km)
- Keine Parametrisierung hochreichender Konvektion
- Anfangs- und Randbedingungen aus der operationellen LME Analyse
- Wahl der Parameter basierend auf dem (prä-)operationellen LMK @ DWD
- Durchführung der Simulationen auf Linux Cluster an der Uni Mainz

Fallstudien: hochreichende Konvektion im Schwarzwald

- 19./20. Juni 2002: VERTIKATOR
 - Evaluierung der Modellergebnisse anhand von Bodenmessungen und Radiosondenaufstiegen
 - Untersuchung des Einflusses der Bodenfeuchte
- 12. Juli 2006: PRINCE
 - Evaluierung der Modellergebnisse anhand von Radarbeobachtungen

 detailierte Untersuchungen zur Auslösung von Konvektion

19 Juni 2002 (VERTIKATOR)

METEOSAT, 1430 UTC

Harald Sodemann, ETH Zürich

- Kaltfront über NW Europa
- Kaum synoptischer Antrieb über SW Deutschland
- Lokale Einzelzellen am nachmittag

Radar, 1645 UTC

Marcus Paulat, IPA Mainz

Modellergebnisse 19.6.2002, 10 – 24 UTC

Niederschlag aus Radardaten

Simulierter Niederschlag

Simulierter und beobachteter Niederschlag

Bodenmessungen (nur D, 24 h!)

LM Ergebnis (14 h)

Konvektiver Niederschlag im Schwarzwald deutlich unterschätzt!

Analyse von Bodenstationen (Synop-Stationen, VERTIKATOR)

Statistik aller 17 Stationen, stündliche Werte:

	mean error	RMSE
$T(2m),^{\circ}C$	1.1	2.3
$q(2m), g kg^{-1}$	-0.16	1.8

Temperatur wird leicht überschätzt
Feuchte wird zufriedenstellend reproduziert

Radiosonden, Freistett (Rheintal)

- Temperaturerh
 öhung in der Grenzschicht
- Anwachsen der Grenzschicht
- Stabile Schichtung nach Niederschlag

LM Simulation, Freistett (Rheintal)

- Temperaturerh
 öhung in der Grenzschicht
- Anwachsen der Grenzschicht
- Stabile Schichtung nach Niederschlag

LM Simulation vs Radiosonde, Freistett (Rheintal)

- Temperatur in der Grenzschicht überschätzt
- Anwachsen der Grenzschicht nicht ausreichend

Welchen Einfluß hat die anfängliche Bodenfeuchte auf die Ergebnisse der Modellsimulationen?

2 zusätzliche Simulationen mit 15 % reduzierter (RED) und erhöhter (ENH) Bodenfeuchte zu Beginn der Simulation

Geringere (erhöhte) Bodenfeuchte führt zu erhöhtem Fluss fühlbarer (latenter) Energie, und dadurch zu erhöhter (geringerer) Temperatur.

Statistik und Vergleich mit Radiosonde

		mean error	RMSE	
REF	$T(2m),^{\circ}C$	1.12	2.30	
	$q(2m), g kg^{-1}$	-0.16	1.77	
RED	$T(2m),^{\circ}C$	1.21	2.32	
	$a(2m) g kg^{-1}$	1.51	2.39	
ENH	$T(2m),^{\circ}C$	0.27	1.97	
	$q(2m), g kg^{-1}$	0.99	2.24	

 Geringste Abweichung Temperatur: ENH Feuchte: REF

- Geringere Temperatur bei erhöhter Bodenfeuchte
- Höhere Grenzschicht bei reduzierter Bodenfeuchte

Einfluß der Bodenfeuchte auf den simulierten Niederschlag

Einfluß der Bodenfeuchte auf den simulierten Niederschlag

Referenz reduzierte Bodenfeuchte June 2002, 0003000 M. red. soil moisture, precip. 00030000 10.0 8.0 8.0 7.0 50.01 来近 20 5.0 ä e 15 47.5 c d 0.5 0.5 0.5 12:56 12.58 12.5E 7.58 10.08 7.5E 10.08 10.0E iongitude (deg) longibade (deti. Index Iden LM, precipitation (mm), 19 June 2002, 10–24 UT .M. red. soil moisture, preci (mm) 19 June 2002 19 June 2002, 10-24 UT enh soil moisture precip (mm) 60.0 40.0 50.0 50.0N 50.0N 47.5 47. 47.5 10.0E Iongitude (dea) 10.0E Iongitude (deg) 7.5E 12.5E 7.5E 10.0E Iongitude (deg) 12.5E 7.5E 12.5E

erhöhte Bodenfeuchte

Einfluß der Bodenfeuchte auf den simulierten Niederschlag

Geringste Abweichung im Niederschlag: RED

20. Juni 2002 (VERTIKATOR)

METEOSAT, 1400 UTC

Harald Sodemann, ETH Zürich

- Kaltfront beeinflusst SW Deutschland
- Linienförmig-organisierte Konvektion am Nachmittag

Radar, 1400 UTC

Marcus Paulat, IPA Mainz

Simulierter und beobachteter Niederschlag

Bodenmessungen (nur D, 24 h!)

LM Ergebnis (14 h)

Unterschätzung des konvektiven Niederschlages

Einfluß der Bodenfeuchte auf den Niederschlag

Kein signifikanter Einfluß der Bodenfeuchte auf den simulierten Niederschlag.

erhöh. Bodenfeuchte

12. Juli 2006 (PRINCE)

METEOSAT, 1130 UTC

Harald Sodemann, ETH Zürich

http://rapidfire.sci.gsfc.nasa.gov/realtime

Radar-Loop, 12. Juli 2006, 10:30 – 16:00 LT

Lokale Einzelzellen (Murgtal) zwischen 12:00 und 15:00 LT.

Jan Handwerker, IMK Karlsruhe

LM Simulation, 13 UTC – 16 UTC (15:00 – 18:00 LT)

Lokale Einzelzellen (Murgtal) zwischen 16:00 und 17:30 LT.

Bedingungen vor Entstehen der Konvektion, 1330 UTC

Relativ hohes CAPE, niedriges LCL an den Orten, an denen Konvektion ausgelöst wird

Blick in die Konvektion

Topographie, Wind, Niederschlag, Wolke, 1330 UTC

Pfeile: 10 m wind Kontourlinien: blau: Aufwind (850 hPa, -1.5 Pa/s), rot: Abwind (850 hPa, 1.5 Pa/s) schwarz: Niederschlag

blau: Aufwind (0.4 m/s) rot: Abwind (-0.4 m/s)

Blick in die Konvektion

Topographie, Wind, Niederschlag, Wolke, 1420 UTC

Pfeile: 10 m wind Kontourlinien: blau: Aufwind (850 hPa, -1.5 Pa/s), rot: Abwind (850 hPa, 1.5 Pa/s) schwarz: Niederschlag

blau: Aufwind (0.4 m/s) rot: Abwind (-0.4 m/s)

Blick in die Konvektion

Topographie, Wind, Niederschlag, Wolke, 1300 – 1530 UTC

Pfeile: 10 m wind Kontourlinien: blau: Aufwind (850 hPa), rot: Abwind (850 hPa) schwarz: Niederschlag

blau: Aufwind (0.4 m/s) rot: Abwind (-0.4 m/s)

Zusammenfassung

- Das DWD-Lokalmodell (LM) wurde im Rahmen von COSI-TRACKS am IPA, Uni Mainz, etabliert.
- Simulation von konvektivem Niederschlag in der Schwarzwaldregion ist problematisch
- Einfluß der Bodenfeuchte auf den simulierten konvektiven Niederschlag abhängig von der Wettersituation
- Hochauflösende Simulationen ermöglichen einen detailierten Einblick in die Prozesse, die zur Auslösung von Konvektion führen, und die Vorgänge in konvektiven Wolken

Bedingungen vor Entstehen der Konvektion, 1330 UTC

Radarrefl., 1445 UTC

Modellergebnisse 20.6.2002, 10 – 24 UTC

Niederschlag aus Radardaten

Simulierter Niederschlag

Einfluß der Bodenfeuchte auf den Niederschlag

reduz. Bodenfeuchte

erhöh. Bodenfeuchte

