

Project No: 603502

## DACCIWA

"Dynamics-aerosol-chemistry-cloud interactions in West Africa"

# Deliverable

# D 1.1 Campaign

| Due date of deliverable:<br>Completion date of deliverable:         | 30/09/2016<br>19/09/2016                             |                   |           |
|---------------------------------------------------------------------|------------------------------------------------------|-------------------|-----------|
| Start date of DACCIWA project:                                      | 1 <sup>st</sup> December 2013                        | Project duration: | 60 months |
| Version:<br>File name:                                              | [V1.0]<br>[D_1.1_DACCIWA_v1.                         | 0.pdf]            |           |
| Work Package Number:<br>Task Number:                                | 1<br>1.1                                             |                   |           |
| Responsible partner for deliverable:<br>Contributing partners:      | KIT<br>UPS, UNIVLEEDS, OA                            | NU .              |           |
| Project coordinator name:<br>Project coordinator organisation name: | Prof. Dr. Peter Knipper<br>Karlsruher Institut für T | tz<br>echnologie  |           |

The DACCIWA Project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 603502.

| Dissemination level |                                                                                       |   |
|---------------------|---------------------------------------------------------------------------------------|---|
| PU                  | Public                                                                                | x |
| PP                  | Restricted to other programme participants (including the Commission Services)        |   |
| RE                  | Restricted to a group specified by the consortium (including the Commission Services) |   |
| СО                  | Confidential, only for members of the consortium (including the Commission Services)  |   |

| Nature of Deliverable |              |   |  |
|-----------------------|--------------|---|--|
| R                     | Report       | х |  |
| Р                     | Prototype    |   |  |
| D                     | Demonstrator |   |  |
| 0                     | Other        |   |  |

#### Copyright

This Document has been created within the FP7 project DACCIWA. The utilization and release of this document is subject to the conditions of the contract within the 7<sup>th</sup> EU Framework Programme. Project reference is FP7-ENV-2013-603502.

#### **DOCUMENT INFO**

#### Authors

| Author           | Beneficiary Short<br>Name | E-Mail                         |
|------------------|---------------------------|--------------------------------|
| Norbert Kalthoff | KIT                       | Norbert.kalthoff@kit.edu       |
| Fabienne Lohou   | UPS                       | Fabienne.lohou@aero.obs-mip.fr |
| Bianca Adler     | KIT                       | Bianca.adler@kit.edu           |
| Barbara Brooks   | UNIVLEEDS                 | Barbara.brooks@ncas.ac.uk      |
| Gbenga Jegede    | OAU                       | oojegede@yahoo.com             |

#### Changes with respect to the DoW

| Issue                                | Comments                                             |
|--------------------------------------|------------------------------------------------------|
| Deliverable delayed from Mai 2016 to | This deliverable is a report of the main field       |
| September 2016.                      | campaign which took place in summer 2016 but the     |
|                                      | deliverable was due end of May 2016. This is         |
|                                      | caused by an oversight at the first amendment.       |
|                                      | There the field campaign was postponed by one        |
|                                      | year but the deliverable only by half a year. So the |
|                                      | expected completion date of the deliverable was      |
|                                      | September 2016 as agreed on with the project         |
|                                      | officer (Ares(2016)1156355 - DACCIWA (603502)).      |
|                                      |                                                      |
|                                      |                                                      |

## Dissemination and uptake

| Target group addressed | Project internal / external |
|------------------------|-----------------------------|
| Scientific community   | Internal and external       |

#### **Document Control**

| Document version # | Date       | Changes Made/Comments                               |
|--------------------|------------|-----------------------------------------------------|
| V0.1               | 29/07/2016 | First version distributed to members of WP1         |
| V0.2               | 29/08/2016 | Upload to DACCIWA sharepoint for approval by the GA |
| V1.0               | 19/09/2016 | Final version after inputs by the GA                |
|                    |            |                                                     |
|                    |            |                                                     |

#### **Table of Contents**

| 1 |    | Intro | duct   | ion5                           |
|---|----|-------|--------|--------------------------------|
| 2 |    | Inve  | stiga  | tion area and instrumentation5 |
|   | 2. | 1     | Site   | s5                             |
|   | 2. | 2     | Instr  | rumentation7                   |
|   |    | 2.2.2 | 1      | Savè7                          |
|   |    | 2.2.2 | 2      | Kumasi                         |
|   |    | 2.2.3 | 3      | Ile-Ife                        |
| 3 |    | Strat | tegy   |                                |
| 4 |    | Instr | ume    | nt availability and IOP days16 |
| 5 |    | IOP   | over   | rview17                        |
|   | 5. | 1     | IOP    | 1                              |
|   | 5. | 2     | IOP    | 2                              |
|   | 5. | 3     | IOP    | 319                            |
|   | 5. | 4     | IOP    | 4                              |
|   | 5. | 5     | IOP    | 5                              |
|   | 5. | 6     | IOP    | 6                              |
|   | 5. | 7     | IOP    | 7                              |
|   | 5. | 8     | IOP    | 824                            |
|   | 5. | 9     | IOP    | 9                              |
|   | 5. | 10    | IOP    | 10                             |
|   | 5. | 11    | IOP    | 11                             |
|   | 5. | 12    | IOP    | 12                             |
|   | 5. | 13    | IOP    | 13                             |
|   | 5. | 14    | IOP    | 14                             |
|   | 5. | 15    | IOP    | 15                             |
| 6 |    | Sum   | mar    | y                              |
| A | рр | endix | < 1: E | 32 Briefing summary report     |
| A | рр | endix | < 2: C | Operation plan                 |

## 1 Introduction

This report provides a summary document for the ground-based field campaign which took place during June and July 2016. The field campaign was conducted to address the scientific objectives of WP1: the structure of the atmospheric boundary layer (ABL) depends mainly on the energy exchange at the Earth's surface. However, due to the high natural and anthropogenic emissions in Southwest Africa, gaseous and aerosol air pollutants also affect the diurnal cycle of the ABL, as do sea breeze and monsoon flows from the Gulf of Guinea. Characteristic features, for example nocturnal low-level jet (LLJs), deep daytime ABLs, and various types of boundary-layer clouds often occur. During the course of the day a transition from nocturnal low-level stratus to stratocumulus, cumulus, and sometimes congestus and possibly cumulonimbus clouds is observed. The atmospheric processes driving this transition are sensitive to the conditions mentioned above and although the nocturnal low-level stratus and the transition to broken clouds appear quite frequently, little attention has been paid to the phenomenon so far. In WP1 the intention is to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). The gathered observations included the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements were supplemented by aerosol and air chemical observations.

The document gives an overview of the conducted measurements including instrument availability and intensive observation period (IOP) overview, aims to inform data users and provides support for case study selection.

## 2 Investigation area and instrumentation

## 2.1 Sites

Intensive measurements were performed at three supersites in southern West Africa: Savè (Benin), Kumasi (Ghana), and IIe-Ife (Nigeria) from 13 June to 31 July (site locations and geographic information are given in Fig. 1 and Table 1). The time zones are UTC in Kumasi and UTC+1 for Savè and IIe-Ife.

The site at Savè was operated jointly by KIT (Karlsruhe Institute of Technology) and UPS (Université Toulouse III - Paul Sabatier, Laboratoire d'Aérologie). All ground-based instruments and the RPAS Ovlita were deployed at the measurement site at Savè at the site of INRAB (Institut National de Recherche Agronomique du Benin). The RPAS Aladina was operated at the Savè airfield about 4 km away from the INRAB site.

The Kumasi site was on the estates of KNUST (Kwame Nkrumah University of Science and Technology): specifically, on the grounds of the University's Department of Agriculture. The Department of Agriculture operates a Meteorological site (henceforth referred to as AGROMET) with a wide range of instrumentation housed in an extensive and maintained paddock: the supersite was deployed around this paddock ensuring that this temporary deployment did not interfere with the permanent measurements. The site was operated by NCAS (National Centre for Atmospheric

Science) with logistical assistance from KNUST. All ground-based instruments were deployed at this measurement site.

The DACCIWA supersite in IIe-Ife was the same location as permanent meteorological station, OAU-Met., established in 2014 at the Teaching and Research Farm of Obafemi Awolowo University. The dedicated measurement area covered 4,200 square meters where four meteorological masts were installed. A 15-m mast was used for wind, temperature and humidity profile measurements, 6-m mast for wind speed and direction together with soil temperature, moisture and heat flux, 2-m mast for eddy covariance system and 2-m mast for surface radiation balance. A facility building housing the project personnel, computers, meteorological devices and internet connectivity was provided which served as a control centre to coordinate the DACCIWA project activities. A 24-speaker phased array acoustic sounder (sodar) was co-located with the ground-based measurements. In addition, a tethered radiosonde system (GRAW Instruments, Germany) was deployed at specific times to obtain temperature and humidity profiles in the atmospheric boundary layer to complement the sodarderived winds (up to 500 m approximately).



Figure 1: The locations of the supersites Kumasi, Savè and Ile-Ife in southern West Africa.

|          | Savè                        | Kumasi           | lle-lfe         |
|----------|-----------------------------|------------------|-----------------|
| Latitude | N 8°00'03.6" (Savè<br>site) | N 6° 40' 48.56'' | N 7º 33' 11.52" |
|          | N 8°01'04.4" (airfield)     |                  |                 |

Table 1: Geographic location of supersites.

| Longitude      | E 2°25'41.1 (Savè<br>site) | E 1° 33' 37.76" | E 4º 33'26.70" |
|----------------|----------------------------|-----------------|----------------|
|                | E 2°27'50.8" (airfield)    |                 |                |
| Height (m MSL) | 166 (Savè site)            | 266             | 274            |
|                | 180 (airfield)             |                 |                |

## 2.2 Instrumentation

The instrumentation installed at the three supersites was selected to allow detecting the processes described in Section 1. The instruments at Savè are listed in Section 2.2.1 (Tables 2 - 6), at Kumasi in Section 2.2.2 (Tables 7 - 10), and at IIe-Ife in Section 2.2.3 (Tables 11 - 14). More information on the instrumentation are given in the **Operation Plan** for WP1 activities which was uploaded to the DACCIWA sharepoint and is attached to this document in Appendix 2.

#### 2.2.1 Savè

Table 2: Surface measurements.

| Instrument                                    | Operator | Measured parameters                                             |
|-----------------------------------------------|----------|-----------------------------------------------------------------|
| Energy balance station                        | KIT      | Q, H, E, B, SW, LW, SM,<br>ST, T, RH, P, wind, prec             |
| Energy balance station<br>and chemistry tower | UPS      | Q, H, E, B, SW, LW, SM,<br>ST, T, RH, P, wind, prec,<br>BF, CCC |

Q: Net radiation, H: Sensible heat flux, E: Latent heat flux, B: Soil heat flux, SW: Short-wave radiation components, LW: Long-wave radiation components, SM: Soil moisture, ST: Soil temperature, T: Air temperature, RH: Relative Humidity, P: Pressure, prec: Precipitation, BF: biogenic fluxes (NO, NO2, isoprene turbulent fluxes), CCC: Chemical Compound Concentration of O3, NO, NO2, CO, isoprene

#### Table 3: Measurements in the boundary layer and above

| Instrument | Operator | Measured parameters                   |
|------------|----------|---------------------------------------|
| Sodar      | KIT      | Horizontal wind profile (0-<br>600 m) |

| UHF wind profiler                       | UPS | Horizontal wind profile<br>(200 - 4000 m)                                                        |
|-----------------------------------------|-----|--------------------------------------------------------------------------------------------------|
| Wind lidars                             | KIT | Radial velocity                                                                                  |
|                                         |     | <i>WindTracer</i> : scanning or vertical stare (400-10000 m, depending on aerosol concentration) |
|                                         |     | <i>Windcube</i> : (0-600 m)                                                                      |
| Microwave radiometer                    | KIT | Temperature and<br>humidity profiles, IWV,<br>LWP, CBT                                           |
| Radiosondes (normal RS and frequent RS) | UPS | T, RH, P, wind profiles<br>Normal RS: 0-20 km<br>Frequent RS: 0-2 km                             |

IWV: Integrated water vapour, LWP: Liquid water path, CBT: Cloud base temperature

| Instrument        | Operator | Measured parameters                   |
|-------------------|----------|---------------------------------------|
| Cloud radar       | KIT      | Radial velocity, cloud top            |
| Ceilometer        | KIT      | Cloud base                            |
| X-Band radar      | KIT      | Precipitation                         |
| MRR, distrometers | KIT      | Precipitation, drop size distribution |
| Cloud camera      | UPS      | Cloud cover                           |

Table 4: Measurements of cloud characteristics and precipitation

#### Table 5: Aerosol measurements

| Instrument                    | Operator                 | Measured parameters                                                |
|-------------------------------|--------------------------|--------------------------------------------------------------------|
| Grimm aerosol<br>spectrometer | KIT                      | Particle concentration for<br>particle sizes from 0.25 to<br>32 µm |
| Sun photometer                | KIT & University Reading | Aerosol optical depth<br>(normal mode and cloud<br>mode)           |

#### Table 6: RPASs (remotely piloted aerial vehicles)

|                                     | RPAS Aladina                                                                                                                                                                                                                                  | RPAS Ovlita                                                |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Operator                            | TU Braunschweig                                                                                                                                                                                                                               | UPS                                                        |
| Location                            | Savè airfield                                                                                                                                                                                                                                 | Savè site                                                  |
| Meteorological<br>parameters        | T, RH, P, wind, fluxes                                                                                                                                                                                                                        | T, RH, P, wind                                             |
| Dimensions                          | 3.6 m x 2 m                                                                                                                                                                                                                                   |                                                            |
| Weight                              | 25 kg                                                                                                                                                                                                                                         | 2.5 kg                                                     |
| Maximum wind speed                  | 15 m/s                                                                                                                                                                                                                                        | 7-8 m/s                                                    |
| Air speed                           | 25 m/s                                                                                                                                                                                                                                        | 10 m/s                                                     |
| Clouds                              | No (touch bottom)                                                                                                                                                                                                                             | No                                                         |
| Night                               | No                                                                                                                                                                                                                                            | No                                                         |
| Operation duration for 1<br>mission | 45 min / 1 flight, 10-20<br>min between flights, max.<br>10 flights per mission, ~10<br>h max                                                                                                                                                 | 90 min / flight (minimum,<br>with thermic maybe<br>longer) |
| Measurement strategy                | Fluxes along constant<br>height flight legs; 1 profile<br>at the beginning to get<br>profiles of wind,<br>temperature and humidity<br>Leg's length according to<br>the pilot (RPAS must be<br>visible). Flight in a 1.5 km-<br>radius circle. | Helicoidal Profiles                                        |

#### 2.2.2 Kumasi

#### **Table 7: Surface measurements**

| Instrument             | Operator | Meteorological parameters           |
|------------------------|----------|-------------------------------------|
| Energy balance station | NCAS     | Q, H, E, B, SW, LW, SM,<br>ST       |
| Flux station           | NCAS     | TS, P, U, V, W, H20,<br>CO2, TL, DT |
| AWS                    | NCAS     | T, RH, PP, WS, WD, PPT              |

Q: 1Hz Net radiation, H: 1Hz Sensible heat flux, E: 1Hz Latent heat flux, B: 1Hz Soil heat flux, SW: 1Hz Short-wave radiation components, LW: 1Hz Long-wave radiation components, SM: 1Hz Soil moisture, ST: 1Hz Soil temperature, T: 5 min Air temperature, PP: 5 min pressure, WS: 5 min horizontal wind, WD: 5 min horizontal wind direction, PPT: 5 min precipitation, RH: 5 min Relative Humidity, P: 20Hz Pressure, H20: 20Hz water vapour concentration, CO2: 20Hz carbon dioxide concentration, U,V,W: 20Hz wind speed components, TS: 20Hz sonic temperature, TL: 20Hz licor air temperature, DT: 20Hz licor dew point temperature

#### Table 8: Measurements in the boundary layer and above

| Instrument                        | Operator | Meteorological<br>parameters                           |
|-----------------------------------|----------|--------------------------------------------------------|
| Sodar                             | NCAS     | Horizontal wind profile (0-<br>600 m) , CT2            |
| Microwave radiometer              | NCAS     | Temperature and<br>humidity profiles, IWV,<br>LWP, CBT |
| Radiosondes (normal and frequent) | NCAS     | T, RH, P, wind profiles                                |

IWV: Integrated water vapour, LWP: Liquid water path, CBT: Cloud base temperature

#### Table 9: Measurements of cloud characteristics and precipitation

| Instrument | Operator | Meteorological |
|------------|----------|----------------|
|            |          | parameters     |

DACCIWA 603502

| Ceilometer   | NCAS | Coud base, aerosol backscatter coefficient |
|--------------|------|--------------------------------------------|
| MRR          | NCAS | Precipitation, drop size distribution      |
| Cloud camera | NCAS | Cloud cover                                |

#### **Table 10: Aerosol measurements**

| Instrument     | Operator | Meteorological<br>parameters |
|----------------|----------|------------------------------|
| Sun photometer | NCAS     | Optical depth                |

#### 2.2.3 Ile-Ife Table 11: Surface measurements

| Instrument             | Operator | Meteorological<br>parameters                        |
|------------------------|----------|-----------------------------------------------------|
| Energy balance station | OAU      | Q, H, E, B, SW, LW, SM,<br>ST, T, RH, P, wind, prec |
| 15-m tower             | OAU      | T, RH, P, wind<br>(multilevels)                     |

Q: Net radiation, H: Sensible heat flux, E: Latent heat flux, B: Soil heat flux, SW: Short-wave radiation components, LW: Long-wave radiation components, SM: Soil moisture, ST: Soil temperature, T: Air temperature, RH: Relative Humidity, P: Pressure, prec: Precipitation

#### Table 12: Measurements in the boundary layer and above

| Instrument          | Operator  | Meteorological<br>parameters          |
|---------------------|-----------|---------------------------------------|
| Sodar               | OAU       | Horizontal wind profile (0-<br>600 m) |
| Tethered radiosonde | OAU & KIT | T, RH profiles                        |

#### Table 13: Measurements of cloud characteristics and precipitation

| Instrument                     | Operator  | Meteorological<br>parameters |
|--------------------------------|-----------|------------------------------|
| Handhold infrared radiometer   | OAU & KIT | Cloud base temperature       |
| Rain gauge                     | OAU       | precipitation                |
| Table 14: Aerosol measurements |           |                              |
| Instrument                     | Operator  | Meteorological<br>parameters |
| Sun photometer                 | OAU       | Aerosol optical depth        |

## 3 Strategy

Continuous measurements were performed throughout the whole measurement period. This included all instrumentation except the normal and frequent radiosoundings, the RPASs and the research aircrafts. A detailed description of the measurement strategy was summarized in the **Operation Plan** for WP1 activities which was uploaded to the DACCIWA sharepoint and is attached to this document in Appendix 2.

During the whole measurement period there was one radiosounding per day in the morning, i.e. when the low-level cloud cover is most intense, to get a statistic of atmospheric conditions. The sonde was launched at 0500 UTC in Savè and between 0530 and 0600 UTC in Kumasi and was send for assimilation. An example of such a sounding is given in Figure 2.



Figure 2: Profiles of temperature, dew point temperature and wind speed and direction at Savè

Briefings were performed every day via skype with participants from the three supersites. The decision about an IOP was based on weather forecast performed by a forecaster in Savè. It was aimed to capture the whole range of meteorological conditions during the IOPs. Another major information for the decision was the status of the instrumentation (see Figure 4 in Section 4). This DACCIWA website: information was updated every dav and uploaded on the (http://dacciwa.sedoo.fr/monitoring.php?current=20160729&nav=Monitoring). During the aircraft campaign, additionally the information about aircraft flights (where and when) were considered. The decision about an IOP was distributed between the partners (including Lome aircraft operation centre during the aircraft campaign) in a briefing report. Briefing report and Forecast were put on the DACCIWA WP1 sharepoint. An example of a briefing report is given in Appendix 1.

There were 15 IOPs in total. Three IOPs were conducted before the aircraft campaign which took place between 27 June and 17 July, seven IOPs took place during the aircraft campaign and five

afterwards. An IOP day (D) started in the evening of D-1 and generally lasted until the afternoon of day D. The typical procedures of an IOP at the different sites are described below and an overview of the timings of the radiosondes and RPAS is given in Figure 3.

At Savè, there were 5 normal radiosoundings (RS) with 6-hour intervals, the first one was launched at 1700 UTC on D-1 and the last one at 1700 UTC on D. Due to lack of radiosondes the 1700 UTC radiosoundings on day D were cancelled at Savè in the course of the campaign. Frequent radiosondes (FRS) up to an altitude of around 1500 m were launched in between the NRS. During IOPs 1-6 FRS were launched hourly between 2100 and 1000 UTC. Starting at IOP 7, FRS were launched in 90 minute intervals between 1830 and 0930 UTC in order to capture the evening transition as well. RPAS Ovlita performed profile flights in the afternoon during periods when no FRS were launched. RPAS Aladina performed flight pattern consisting of vertical profiles and horizontal legs during periods when stratus was present in the morning, when stratus was breaking and in the evening during transition to stable conditions.

At Kumasi, 5 normal radiosondes were launched in 6-hour intervals, starting at 1800 UTC on D-1. During IOPs 1-10, FRS were launched at 0300, 0600 and/or 0900 UTC, partly at 2 different sites at the same time. During IOPs 11-15, normal radiosondes were launched in intervals of 1.5 hours in the afternoon, evening and morning and in intervals of 3 hours during the night. During IOP 14, no radiosondes were launched during the night.

At Ile-Ife, tethered radiosondes reaching heights of up to 900 m AGL were launched during IOPs, typically between 1800 UTC on D-1 and 1700 UTC on D. Intervals were approximately 3-hourly or 6-hourly, depending on availability of helium gas and operational condition of the electric winch. IOPs 3 and 5 were partially completed due to lack of helium gas needed to fill meteorological balloons. This problem was finally resolved by release of helium gas shipped to Lagos, Nigeria from Germany in support of DACCIWA project by the customs. On July 20<sup>th</sup>, a mechanical problem developed on the drive belt for the electric motor of the winch. This situation forced partial completion of the soundings during IOP 12 (although it was rectified the next day). Another problem that occurred later on was frequent bursts of the balloons received from Germany were almost depleted. The situation was rescued by sourcing for balloons locally.



Figure 3: Time table of complementary measurements during IOPs.

## 4 Instrument availability and IOP days

Instrument availability was used to decide about IOPs during the campaign and will also be used for the subsequent decisions about "golden days".

| Date:                           | 06       | 08  | 06 | 08 | 06       | 08 | 06 | 08 | 0 80 | 6 06 | 06  | 08 | 06   | 0 80     | 6 0 | 8 0 | 8 0 | 7 07 | 07              | 07 | 07  | 07 | 07 | 07 0 | 7 07 | 07  | 07  | 07 0 | 7 07 | 07  | 07 | 07       | 07 0 | 7 07 | 0   | 7 0 | 7 07           | 07 | 07 | 17 | 07 0 | 7 07 |
|---------------------------------|----------|-----|----|----|----------|----|----|----|------|------|-----|----|------|----------|-----|-----|-----|------|-----------------|----|-----|----|----|------|------|-----|-----|------|------|-----|----|----------|------|------|-----|-----|----------------|----|----|----|------|------|
|                                 | 13       | 14  | 16 | 16 | 17       | 18 | 19 | 20 | 21 2 | 2 28 | 24  | 26 | 28   | 27 2     | 8 2 | 8 3 | 0 0 | 1 02 | 03              | 04 | 06  | 08 | 07 | 08 0 | 8 10 | 11  | 12  | 13 1 | 4 16 | 16  | 17 | 18       | 18 2 | 0 2  | 1 2 | 2 2 | 8 24           | 26 | 28 | 27 | 28 2 | 9 30 |
| Save                            |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| CONTINUOUS OBSERVATIONS         |          |     |    |    |          | op |    |    | op   |      |     |    | lop. |          |     | æ   | 1   | P.   | lo <sub>1</sub> |    | lop |    |    | lop. |      | lop |     | 10   | 9    |     |    | lop      |      | lo   | 9   |     | lop            |    |    | op |      | iop  |
| Surface                         |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| KIT station                     |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| UPSstation                      |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| CO Concentration                |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| NOX Corce stration              |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| O3 Concentration                |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| NH3 Concentration               | <u> </u> |     |    |    |          |    |    | 8  |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     | _   |      |      |     |    |          |      |      |     |     |                |    |    |    | 8    |      |
| NOX Flex                        |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| 📙 isoprene Flux                 |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      | 2    |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Boundary Layer and above        |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    | Ξ.   |      |
| UHF which profile r             |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Sodar                           |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    | [  |    |      |      |
| Whid lidar                      |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Microwave radiometer            |          |     |    |    | <u> </u> |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Radiosondes                     |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Clouds and precipitation        |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     | Γ   |      |                 |    |     |    |    |      |      |     | Γ   |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| C loud came ra                  |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| 📙 Cloud Camera KIT              |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| C lovd radar                    |          |     |    |    |          |    | Π  |    |      |      |     |    | Ì    |          |     |     | Г   |      | F               |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     | F   |                |    |    |    | Ī    |      |
| Cellometer                      |          |     |    |    |          |    | Ō  |    |      |      |     |    |      |          |     |     | Γ   |      |                 |    |     |    |    |      |      |     |     |      | Γ    |     |    |          |      | F    |     |     |                |    |    |    |      |      |
| X-band radar                    |          | i   |    |    |          |    |    |    |      |      |     |    |      |          |     |     | Ī   |      |                 | 1  |     |    |    |      |      |     |     | Ē.   |      | 1   |    |          |      |      | 1   |     |                |    | i  |    | Ī    | 1    |
| MRR Micro Rah Radar             |          | 1   |    |    |          |    | П  |    |      | T    |     | П  | i    |          |     | 1   | Ē   |      |                 | 1  | F   |    |    |      | 1    |     | 1   | П    |      | 1   |    | i        |      | Ē    | ٦   | Ē   | 1              | П  | i  | =  | ī    | 1    |
| Aerosols                        |          |     |    |    |          |    | F  |    |      |      |     | Г  |      | -        |     |     |     |      |                 |    |     |    | Г  |      |      |     | Г   | Fr   |      |     |    |          |      |      | Ī   |     |                | Г  |    | -  |      |      |
| Grimm spectrometer              | Ē        | i i | 'n | -  |          |    | m  | i  | ٦Ì   | Ē    | 1   | Ē  | ľ    | -ì       | Ē   | T)  | È   | 1    | î.              | 1  | i-  | 1  |    | i i  | 1    | Ē   | 1   |      | i r  | 1 I |    | i        |      | i i  | T)  | Ē   | 1 I            | 'n | -i |    | Ē    | 1    |
| Su plotmeter                    | F        |     |    |    |          |    | Н  |    |      |      |     | H  |      |          | F   |     | h   |      |                 |    |     | 1  | H  |      |      |     | i – | Н    |      | 1   | H  |          |      | F    | 1   |     |                | H  | i  |    | h    |      |
|                                 |          |     |    |    |          |    | F  |    | -    |      |     | ۲  |      | -        |     | -   |     |      |                 |    |     |    | -  |      | -    |     |     | Fr   |      |     |    |          | -    |      | -   | -   |                |    |    | -  |      |      |
| NH3 Chamber                     | Ē        | Н   |    |    |          |    |    |    | -'n  |      |     |    |      | -ì       |     | -i  | 'n  |      |                 | 1  | F   |    | h  |      |      |     |     |      |      | 1   |    |          | 1    |      |     |     |                | 'n |    |    |      |      |
| Frequent radios oudes           | -        | Н   |    |    | -        |    |    |    |      |      |     | F  |      | -        |     |     | -   |      |                 |    | -   |    |    |      | -    | -   | Ē   | H    |      | -   | -  |          | -    | -    |     | -   |                | H  |    | -  |      | -    |
| RPAS-OVITA                      | -        | H   |    | Η  | -        |    |    |    | -    |      | -   | H  |      | -        | -   |     |     |      | -               |    | -   | -  |    |      | -    | -   |     |      |      | -   |    | -i       |      | -    | ÷   |     |                | -  |    |    |      |      |
| R PAS - ALADINA                 | -        | Н   |    | Н  | -        | Н  |    |    | -ł   |      | -   | ÷  |      | -        |     | -   |     | -    | P               |    | ⊨   |    | -  |      | -    | ÷   | 1   | H    | -    |     |    |          |      |      |     | -h  |                | -  |    |    |      |      |
| Kumaal                          | -        | Н   | -  | 님  | -        | Н  |    |    |      |      |     | Н  |      | ÷        |     |     |     |      |                 |    | -   |    |    |      |      | -   | -   |      |      |     |    | $\vdash$ |      |      |     |     |                | -  |    |    |      |      |
| CONTINUOUS OBSERVATIONS         | -        | Н   |    | Н  |          |    |    |    |      |      | -   | Н  |      | -h       |     | -h  | -   |      | -               | -  | -   | -  | ╘  |      |      | -   | -   | H    | 4    | -   | H  | H        |      |      |     |     |                |    |    | -  |      |      |
| Surface                         | -        | Н   |    |    | (OP)     |    |    |    |      |      | -   | Н  |      |          |     |     | ÷   |      | -               | +  | ╘   | ÷  | ╘  |      | -    | 는   | -   |      |      | -   | -  | $\vdash$ |      |      | ÷   |     |                |    |    |    |      |      |
| Charge Palace Chilles           | -        |     |    |    | -        |    |    |    | _    |      |     |    |      | _        |     |     |     |      | -               |    | -   |    |    |      | 1    |     |     |      |      |     |    |          |      |      |     | 1   |                |    |    | _  |      | -    |
| Elege balance Salor             | -        |     |    | =  |          |    |    |    | _    | -    |     | H  |      | -        | +   | -   | -   |      | -               |    | -   |    |    |      |      |     | -   |      | +    | -   |    |          | _    | +    | -   | +   | -              | Н  | -  | _  | -    | 4    |
|                                 | _        |     |    |    |          |    | Н  |    | _    | +    |     | Н  |      | -        | +   | 4   | +   | _    | +               | -  | ┢   |    |    |      | -    |     |     | H    | +    | +-  | -  |          | _    | +    | +   | +   | -              | Н  |    | _  | Ļ    | 4    |
| AWG                             |          |     |    |    | _        | _  |    |    | _    | _    |     |    |      | _        |     | -   | _   | -    |                 | -  | -   |    |    |      | -    |     | _   |      | _    | _   |    |          | _    | _    | _   |     | -              |    |    |    | _    |      |
| Bothdary Layer and above        |          |     |    |    | 100      |    |    |    | _    |      |     |    |      |          |     |     |     |      |                 |    | 1   |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Sodar                           |          |     | Ц  |    |          |    | Ц  |    |      |      |     | Ц  |      | _        | -   | -   | Ļ   |      |                 | _  | F   |    |    |      | -    |     |     |      | -    | -   |    |          | _    |      | -   | -   | -              | Ц  | ļ  |    | Ļ    |      |
| Microwave radiometer            |          |     |    |    |          |    |    |    |      | -    | -   |    |      |          | -   | _   | +   |      | -               |    | F   |    |    |      |      |     |     |      | -    | +   |    |          |      |      |     | +   | -              |    |    |    | -    |      |
| Radiosondes                     |          |     |    |    |          |    |    |    | _    |      | _   |    |      |          |     | _   |     | _    |                 | _  |     | _  |    |      |      |     |     |      | _    | _   |    |          | _    |      | _   |     | _              |    |    | _, | _    |      |
| Clouds and precipitation        |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      | 1               |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Cellometer                      |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| MRR Dischometer                 |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| C loud came ra                  |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Ae ros o ls                     |          |     |    |    |          |    |    |    |      |      |     |    |      |          | 1   |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Su photometer                   |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| INTENSIVE OBSERVATIONS          | 2        |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      | 3   |     |                |    |    |    |      |      |
| Freq eest radios ondes          |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| le-ite                          |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| CONTINUOUS OBSERVATIONS         |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     | Т   |      |                 |    |     |    | Г  |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Sunface                         |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| OAU-MetStation                  |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     | 1   |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Boundary Layer                  |          | Γ   |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    | Γ  |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Sodar                           |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     | [   |                |    |    |    |      |      |
| 늘 Tethered Radiosonde           |          |     |    |    |          |    |    |    |      |      |     |    |      |          |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     |     |                |    |    |    |      |      |
| Clotds                          |          | Γ   |    |    |          | Γ  |    |    |      |      |     |    |      |          | ТГ  |     | Ē   |      |                 |    |     |    | Г  |      |      |     |     | ГГ   |      |     | Γ  |          | ΠΓ   |      | īΓ  |     |                |    |    | -  |      | ī 🗆  |
| Infrared Photometer (Hand-heid) |          |     |    |    |          |    |    | -  |      | Ē    | 1   |    | Ī    | ٦Ì       | Ē   |     | Ē   | 1    | Ē               | 1  | Ē   | 1  |    | Ē    |      | Ē   | 1   |      | Ē    | Ì   |    |          |      | Ē    | ٦Ì  | Ē   | ٦ <sup>`</sup> |    | i  |    | Ē    | 1    |
| Aerosols                        |          |     |    |    |          |    |    |    | -    |      |     | F  |      |          |     |     |     |      | F               |    | F   |    |    |      | -    |     | Г   | Г    |      |     |    |          |      |      | Г   | -   |                | Г  |    | -  |      | Ī    |
| Sta Photometer (Haad-held)      |          |     |    |    |          |    |    |    |      |      | 1 I |    |      | Ľ        | į,  |     | Ì   |      | P               |    | È   | 1  |    |      |      | i – | Ì.  |      | 1    | 1   |    |          |      | j,   | Ţ,  | j,  |                |    |    |    |      | 1    |
| INTENSIVE OBSERVATIONS          |          |     |    |    |          |    | F  |    | -    |      |     |    |      | -        |     |     |     |      |                 |    |     |    |    |      |      |     |     |      |      |     |    |          |      |      |     | -   |                |    |    | -  |      |      |
| Frequent Tethered Radiosonde    |          | i.  |    |    |          |    |    |    |      |      | 1   |    |      | <b>D</b> | i.  |     | i.  |      | Ē               | 1  | F   | 1  |    |      |      | Í.  | i.  |      | į,   | 1 - |    |          |      | F    |     | È   |                |    |    |    |      | 1    |
| Date:                           | 08       | 08  | 08 | 08 | 08       | 08 | 08 | 08 | 08 0 | 8 04 | 0.0 | 08 | 08   | 06 0     | 8 0 | 8 0 | 8 0 | 7 07 | 07              | 07 | 07  | 07 | 07 | 07 0 | 7 07 | 07  | 07  | 07 0 | 7 07 | 07  | 07 | 07       | 07 0 | 7 07 | - 6 | 7 0 | 7 07           | 07 | 07 | 07 | 07 0 | 7 07 |
|                                 | 13       | 14  | 16 | 18 | 17       | 18 | 18 | 20 | 21 2 | 2 23 | 24  | 26 | 28   | 27 2     | 8 2 | 8 3 | 0 0 | 1 02 | 03              | 04 | 06  | 08 | 07 | 08 0 | 8 10 | 11  | 12  | 13 1 | 4 16 | 18  | 17 | 18       | 18 2 | 0 2  | 1 2 | 2 2 | 8 24           | 26 | 28 | 27 | 28 2 | 8 30 |

Figure 4: Instrument status during the measurement period from 13 June to 30 July 2016 at the different sites. Green indicates full data availability, green partial data availability and red no data availability. IOPs (in violet) are indicated on days D.

## 5 IOP overview

Due to the large number of IOPs, the whole range of different large-scale conditions (e.g. deep monsoon flow, strong monsoon flow, westerly winds, southerly winds, height and strength of the LLJ, depth and strength of the African easterly jet (AEJ)) could be captured by the measurements. This will allow investigating the occurrence (onset, depth, cloud base) of the nocturnal stratus under different conditions, which was one of the criteria for the successful achievement of the deliverable.

Comprehensive quicklooks for the better part of the instruments were produced automatically and uploaded daily to the DACCIWA website (http://dacciwa.sedoo.fr). Horizontal wind measurements from multiple instruments (e.g. UHF wind profiler, Sodar, normal and frequent radiosondes at Savè) clearly demonstrate the varying characteristics of the wind field. For example, the strength of the LLJ varied considerably from around 6 m s<sup>-1</sup> (IOPs 1, 5, 12 and 13) up to 14 m s<sup>-1</sup> during IOP 9 and the AEJ reached wind speeds of more than 15 m s<sup>-1</sup> (IOPs 6, 7 and 8), but was also weak (IOP 2) or north of Savè (IOPs 9, 10, 11 and 12). While stratus developed during all the IOPs except for IOP 10, its onset, cloud base, depth and dissolution time differed considerably. Information on the characteristics of the stratus can be retrieved from e.g. ceilometer, cloud radar and infrared camera (quicklooks are available on the DACCIWA website). For example, during IOP 5 the stratus formed early at 2240 UTC with a very low cloud base height of less than 50 m AGL, while if formed late at 0530 UTC with a cloud base height of around 200 m AGL during IOP 3.

In the following, quicklooks from the ceilometers at Savè and Kumasi are shown for all IOPs to get an overview of the onset, cloud base and dissolution of nocturnal stratus during IOPs. The quicklooks show backscatter data detected with the ceilometers and allow to identify periods with stratus and the cloud base height.



## 5.1 IOP 1

Figure 5: Ceilometer backscatter (colour-coded) at Savè during IOP 1. White dots indicate cloud base.



Figure 6: Ceilometer backscatter (colour-coded) at Kumasi during IOP 1.









Figure 8: Ceilometer backscatter (colour-coded) at Kumasi during IOP 2.



Figure 9: Ceilometer backscatter (colour-coded) at Savè during IOP 3. White dots indicate cloud base.



Figure 10: Ceilometer backscatter (colour-coded) at Kumasi during IOP 3.



Figure 11: Ceilometer backscatter (colour-coded) at Savè during IOP 4. White dots indicate cloud base.



Figure 12: Ceilometer backscatter (colour-coded) at Kumasi during IOP 4.

## 5.5 IOP 5



Figure 13: Ceilometer backscatter (colour-coded) at Savè during IOP 5. White dots indicate cloud base.



Figure 14: Ceilometer backscatter (colour-coded) at Kumasi during IOP 5.

## 5.6 IOP 6



Figure 15: Ceilometer backscatter (colour-coded) at Savè during IOP 6. White dots indicate cloud base.



Figure 16: Ceilometer backscatter (colour-coded) at Kumasi during IOP 6.

## 5.7 IOP 7



Figure 17: Ceilometer backscatter (colour-coded) at Savè during IOP 7. White dots indicate cloud base.



Figure 18: Ceilometer backscatter (colour-coded) at Kumasi during IOP 7.

## 5.8 IOP 8



Figure 19: Ceilometer backscatter (colour-coded) at Savè during IOP 8. White dots indicate cloud base.



Figure 20: Ceilometer backscatter (colour-coded) at Kumasi during IOP 8.

## 5.9 IOP 9



Figure 21: Ceilometer backscatter (colour-coded) at Savè during IOP 9. White dots indicate cloud base.



Figure 22: Ceilometer backscatter (colour-coded) at Kumasi during IOP 9.







Figure 24: Ceilometer backscatter (colour-coded) at Kumasi during IOP 10.



Figure 25: Ceilometer backscatter (colour-coded) at Savè during IOP 11. White dots indicate cloud base.



Figure 26: Ceilometer backscatter (colour-coded) at Kumasi during IOP 11.



Figure 27: Ceilometer backscatter (colour-coded) at Savè during IOP 12. White dots indicate cloud base.



Figure 28: Ceilometer backscatter (colour-coded) at Kumasi during IOP 12.



Figure 29: Ceilometer backscatter (colour-coded) at Savè during IOP 13. White dots indicate cloud base.



Figure 30: Ceilometer backscatter (colour-coded) at Kumasi during IOP 13.



Figure 31: Ceilometer backscatter (colour-coded) at Savè during IOP 14. White dots indicate cloud base.



Figure 32: Ceilometer backscatter (colour-coded) at Kumasi during IOP 14.



Figure 33: Ceilometer backscatter (colour-coded) at Savè during IOP 15. White dots indicate cloud base.



## 6 Summary

This deliverable D1.1 gives an overview of the atmospheric-boundary-layer campaign which includes measurements at the three supersites in Ghana, Benin, and Nigeria during the months June and July 2016. This period also encompasses the aircraft campaign which was led from Lomé/Togo.

Within the atmospheric-boundary-layer campaign, in total 15 intensive operation periods (IOPs) were performed. During the IOPs additional radiosoundings in up to hourly intervals as well as RPAS flights were conducted in addition to the extensive continuously operated instrumentation. The measurements cover a wide range (large-scale) meteorological conditions. Therefore, we can assume that all ingredients are available in the data set that allow to successfully determine the parameters which control the life-cycle of the low-level nocturnal stratus in southern West Africa. These overview also allows case study selection for the data users from the other work packages and illustrates that the pre-conditions for the milestones MS4 and MS5 are reached.

## Appendix 1: Briefing summary report

## DACCIWA WP1 briefing summary

## 10 July, 2016

Participants: Savè (Fabienne Lohou, Norbert Kalthoff), Kumasi (Victoria Smith), Ile-Ife (Gbenga Jegede)

1. Forecast: see on Sharepoint WP1 / Forecast

2. Status of supersite instruments available on:

hhttp://dacciwa.sedoo.fr/monitoring.php?current=20160702&nav=Monitoring

#### 1. Operations for the current IOP#9 (10 -11 July 2016)

IOP# 9 is maintained: unusual conditions up to now with very deep and strong monsoon flow and almost no AEJ. Since we have already several good IOPs with LLC, we are searching for unusual conditions like these.

Research Aircrafts:

- Sunday 10 July
  - ATR flew today Lomé-Cotonou-Savè-Parakou: mid-level cloud flight.
  - TO flew over Savè above clouds in the morning.
- Monday 11 July: ATR and Falcon would fly over Abidjan and TO over Lomé.

Savè:

- FRS: from 10 July 1700 UTC to 11 July 1100 UTC every 1.5 hours
- RS: 0000, 0600, 1200, 1800 UTC
- ALADINA flights:
  - 2 stratus morning flights 10 July (0530 0830 UTC)
  - 3 breaking stratus flights 10 July (1100 1930 UTC)
- OVLITA: perhaps one flight if the wind does not increase to much in the late afternoon to increase the temporal monitoring of the 1745 to 1845 period during which strong humidification is observed on FRS.

#### Kumasi:

• 10 July, 18 UTC to 11 July, 18 UTC: radiosondes every 6 hours

#### lle-lfe:

• soundings from 10 July, 1800 UTC to 11 July 04, 1800 UTC

#### 2. Foreseen operations

Since we have LLC every day, we more or less decided to do an IOP every 3 days unless an MCS over the sites or/and rain are forecasted.

Tuesday 12 July: no IOP

A possible IOP could be done during the night from Wednesday 13 July to Thursday 14 July.

## Appendix 2: Operation plan



# DACCIWA – Field campaign 2016

## **OPERATION PLAN FOR GROUND BASED SUPERSITES**


# **Table of contents**

| Table          | of contents                                             | 2  |
|----------------|---------------------------------------------------------|----|
| 1              | Introduction                                            | 4  |
| 1.1            | DACCIWA project overview                                | 4  |
| 1.2            | Scientific objectives of WP1                            | 4  |
| 1.3            | Useful links                                            | 5  |
| 1              | Field Campaign                                          | 6  |
| 1.1            | Investigation Area                                      | 6  |
| 1.1.1          | Savé                                                    | 7  |
| 1.3.1          | Kumasi                                                  | 8  |
| 1.3.2          | Ile-Ife                                                 | 10 |
| 1.4            | Time line                                               | 10 |
| 2              | Instrumentation                                         | 12 |
| 2.1            | Savé                                                    | 12 |
| 2.2            | Kumasi                                                  | 16 |
| 2.3            | Ile-Ife                                                 | 18 |
| 3              | Measurement Strategy                                    | 20 |
| 3.1            | Non-IOPs                                                | 20 |
| 3.2            | IOPs                                                    | 20 |
| 3.2.1          | IOP definition                                          | 20 |
| 3.2.2          | IOP during and outside aircraft campaign                | 20 |
| 3.3            | Scan strategy for remote sensing instruments at Savé    | 21 |
| 3.3.1          | Microwave radiometer                                    | 21 |
| 3.3.2          | Wind lidars                                             | 23 |
| 3.3.3          | Sodar                                                   | 24 |
| 3.3.4          | UHF                                                     | 24 |
| 3.3.5          | Cloud radar                                             | 24 |
| 3.3.6          |                                                         | 24 |
| 3.3.7          | X-band rain radar                                       | 24 |
| 3.4            | RPAS at Savé                                            | 24 |
| 3.4.1          | Flight patterns                                         | 25 |
| 3.5            | Scan strategy for remote sensing instruments at Kumasi  | 27 |
| 3.5.1          | Microwave radiometer                                    | 27 |
| 5.5.2<br>2.5.2 | Sodar                                                   | 28 |
| 3.3.3          |                                                         | 20 |
| 3.6            | Scan strategy for remote sensing instruments at Ile-Ife | 28 |

| 3.6.1                                                                                                                                                                                     | Sodar                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.7                                                                                                                                                                                       | Research aircrafts                                                                                                                                                                                                                                                                                    | 28                                                                                                                                             |
| 4                                                                                                                                                                                         | Coordination and Organisation                                                                                                                                                                                                                                                                         | 29                                                                                                                                             |
| 4.1                                                                                                                                                                                       | IOP planning                                                                                                                                                                                                                                                                                          | 29                                                                                                                                             |
| 4.2                                                                                                                                                                                       | Forecast tools                                                                                                                                                                                                                                                                                        | 30                                                                                                                                             |
| 4.3                                                                                                                                                                                       | Important contact information                                                                                                                                                                                                                                                                         | 30                                                                                                                                             |
| 4.4                                                                                                                                                                                       | Assignment of tasks                                                                                                                                                                                                                                                                                   | 31                                                                                                                                             |
| 4.4.1                                                                                                                                                                                     | Savé                                                                                                                                                                                                                                                                                                  | 31                                                                                                                                             |
| 4.4.2                                                                                                                                                                                     | Kumasi                                                                                                                                                                                                                                                                                                | 32                                                                                                                                             |
| 4.4.3                                                                                                                                                                                     | Ile-Ife                                                                                                                                                                                                                                                                                               | 32                                                                                                                                             |
| 4.5                                                                                                                                                                                       | Staff                                                                                                                                                                                                                                                                                                 | 33                                                                                                                                             |
| 4.5.1                                                                                                                                                                                     | Save                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                             |
| 4.5.2                                                                                                                                                                                     | Kumasi                                                                                                                                                                                                                                                                                                | 34                                                                                                                                             |
| 1 5 2                                                                                                                                                                                     | Ile Ife                                                                                                                                                                                                                                                                                               | 35                                                                                                                                             |
| 4.5.5                                                                                                                                                                                     | IIE-IIE                                                                                                                                                                                                                                                                                               | 55                                                                                                                                             |
| 4.5.5<br>5                                                                                                                                                                                | Quicklooks and data                                                                                                                                                                                                                                                                                   | 36                                                                                                                                             |
| 4.5.3<br>5<br>5.1                                                                                                                                                                         | Quicklooks and data                                                                                                                                                                                                                                                                                   | <b>36</b>                                                                                                                                      |
| 4.5.3<br>5<br>5.1<br>5.1.1                                                                                                                                                                | Quicklooks and data<br>Realtime<br>Savé                                                                                                                                                                                                                                                               | <b>36</b><br>36<br>36                                                                                                                          |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2                                                                                                                                                       | Quicklooks and data<br>Realtime<br>Savé<br>Kumasi                                                                                                                                                                                                                                                     | <b>36</b><br>36<br>36<br>36<br>37                                                                                                              |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2<br>5.1.3                                                                                                                                              | Quicklooks and data<br>Realtime<br>Savé<br>Kumasi<br>Ile-Ife                                                                                                                                                                                                                                          | <b>36</b><br>36<br>36<br>37<br>38                                                                                                              |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.2                                                                                                                                       | Quicklooks and data.         Realtime.         Savé         Kumasi.         Ile-Ife         Post-processing.                                                                                                                                                                                          | 35<br>36<br>36<br>36<br>37<br>38<br>39                                                                                                         |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.2<br>Apper                                                                                                                              | Quicklooks and data                                                                                                                                                                                                                                                                                   | <ul> <li>36</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> </ul>                                     |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.2<br><b>Apper</b><br>A.1 In                                                                                                             | Quicklooks and data                                                                                                                                                                                                                                                                                   | <ul> <li>36</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>40</li> </ul>                         |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.2<br><b>Apper</b><br>A.1 In<br>A.2 In                                                                                                   | Quicklooks and data         Realtime         Savé         Sumasi         Ile-Ife         Post-processing         ndix A: Meta data of instruments at Save         struments of KIT         struments of UPS                                                                                           | <ul> <li>36</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>40</li> <li>53</li> </ul>             |
| 4.5.3<br>5<br>5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.2<br><b>Apper</b><br>A.1 In<br>A.2 In<br>A.3 In                                                                                         | Quicklooks and data         Realtime         Savé         Sumasi         Ile-Ife         Post-processing         ndix A: Meta data of instruments at Save         struments of KIT         struments of UPS         struments of TUBS                                                                 | <ul> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>40</li> <li>53</li> <li>66</li> </ul>             |
| <ul> <li>4.5.3</li> <li>5</li> <li>5.1</li> <li>5.1.1</li> <li>5.1.2</li> <li>5.1.3</li> <li>5.2</li> <li>Apper</li> <li>A.1 In</li> <li>A.2 In</li> <li>A.3 In</li> <li>Apper</li> </ul> | Quicklooks and data         Realtime         Savé         Savé         Kumasi         Ile-Ife         Post-processing         ndix A: Meta data of instruments at Save         struments of KIT         struments of UPS         struments of TUBS         ndix B: Meta data of instruments at Kumasi | <ul> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>40</li> <li>53</li> <li>66</li> <li>69</li> </ul> |

# 1 Introduction

#### 1.1 DACCIWA project overview

Massive economic and population growth and urbanisation are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030, the impacts of which on human health, ecosystems, food security and the regional climate are largely unknown.

An assessment of these impacts is complicated by:

- 1. a superposition with effects of global climate change,
- 2. the strong dependence of SWA on the sensitive West African monsoon,
- 3. incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation and regional circulations
- 4. a lack of observations to advance our understanding and improve predictions.

DACCIWA will quantify the influence of anthropogenic and natural emissions on the atmospheric composition over South West Africa and assess their impact on human and ecosystem health and agricultural productivity. It will quantify the coupling between aerosols and clouds and identify controls on the formation and persistence of low-level clouds. Further it will identify meteorological controls on precipitation, focusing the transition from stratus to convective clouds and the forcing from weather systems. DACCIWA will quantify the two way cloud and aerosol impacts on the radiation and energy budgets from the cloud scale to the scale of the West African monsoon circulation. State-of- the-art meteorological, chemistry and air-quality models, satellite retrievals of clouds, precipitation, aerosols and radiation will be assessed in close collaboration with operational centres and research findings will be communicated to policy-makers, scientists, operational centres, students, and general public using a graded communication strategy.

#### 1.2 Scientific objectives of WP1

The structure of the atmospheric boundary layer (ABL) depends mainly on the energy exchange at the Earth's surface. However, due to the high natural and anthropogenic emissions in Southwest Africa, gaseous and aerosol air pollutants also affect the diurnal cycle of the ABL, as do sea breeze and monsoon flows from the Gulf of Guinea.

Characteristic features, for example nocturnal low-level jet (LLJs), deep daytime ABLs, and various types of boundary-layer clouds often occur. During the course of the day a transition from nocturnal low-level stratus to stratocumulus, cumulus, and sometimes congestus and possibly cumulonimbus clouds is observed. The atmospheric processes driving this transition are sensitive to the conditions mentioned above and although the nocturnal low-level stratus and the transition to broken clouds appear quite frequently, little attention has been paid to the phenomenon so far.

In this work package, the intention is to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. This will be achieved by performing detailed intensive in-situ and remote sensing observations in addition to highly resolved model simulations (large eddy simulations, LES). The intensive observational period will include measurements of the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as measurements of the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements will be supplemented by air chemical observations.

## 1.3 Useful links

DACCIWA project: <u>http://www.dacciwa.eu/</u> DACCIWAsharepoint: <u>https://team.kit.edu/sites/dacciwa/</u> DACCIWA general operation plan: Quicklooks and data: <u>http://dacciwa.sedoo.fr/</u> Misva: <u>http://misva.sedoo.fr/</u> Eumetsat: <u>http://www.eumetsat.int/</u> Synop reports: <u>http://www.ogimet.com/gsynop.phtml.en</u> ECMWF forecast: http://www.ecmwf.int/en/forecasts

# 1 Field Campaign

## 1.1 Investigation Area

During the monsoon season 2016 intensive measurements will be performed at three supersites in southern West Africa: Kumasi (Ghana), Savé (Benin) and Ile-Ife (Nigeria) (locations are given in Fig. 1).

The supersites are in different time zones (Table 1). For example, 0600 UTC is 0600 local standard time (LST) in Ghana and 0700 LST in Benin and Nigeria. All time lines are in UTC hereafter.



Fig. 1 Frequency of stratus in June-October 2006 (from Schrage et al. 2012). The locations of the supersites Kumasi, Savé and Ile-Ife are indicated

Table 1: Geographic location of supersites.

|          | Savé                        | Kumasi           | Ile-Ife         |
|----------|-----------------------------|------------------|-----------------|
| Latitude | N 8°00'03.6" (Gobe<br>site) | N 6° 40' 48.56'' | N 7º 33' 11.52" |
|          | N 8°01'04.4"<br>(airfield)  |                  |                 |

| Longitude E 2°25'41.1 (Gobe site) |                            | E 1° 33' 37.76'' | E 4º 33'26.70" |
|-----------------------------------|----------------------------|------------------|----------------|
|                                   | E 2°27'50.8"<br>(airfield) |                  |                |
| Height (m MSL)                    | 166 (Gobe site)            | 266              | 274            |
|                                   | 180 (airfield)             |                  |                |

Table 2: Time zones at the supersites.

| Supersite | Time zone |
|-----------|-----------|
| Ghana     | UTC       |
| Benin     | UTC+1     |
| Nigeria   | UTC+1     |

#### 1.1.1 Savé

The site at Savé will be operated jointly by KIT (Karlsruhe Institute of Technology) and UPS (Université Toulouse III - Paul Sabatier, Laboratoire d'Aérologie).

All ground-based instruments and the RPAS OVLITA will be deployed at the measurement site at Gobe at the site of INRAB (Institut National de Recherche Agronomique du Benin). The RPAS Aladina will be operated at the Savé airfield.



Fig. 2: Overview of measurement sites close to Savé.



Fig. 3: Overview of airfield sites at Savé. The red circle stands for the 1 km radius zone for the RPAS Aladina operation. The white area is excluded from the ALADINA operation because of the city. The blue circle stands for the zone for the RPAS OVLITA operation.

#### 1.3.1 Kumasi

The Kumasi site is on the estates of KNUST (Kwame Nkrumah University of Science and Technology): specifically on the grounds of the University's Department of Agriculture. The Department of Agriculture operates a Meteorological site (henceforth referred to as AGROMET) with a wide range of instrumentation housed in an extensive and maintained paddock: the supersite will be deployed around this paddock ensuring that this temporary deployment does not interfere with the permanent measurements. The site will be operated by NCAS (National Centre for Atmospheric Science) with logistical assistance from KNUST. All ground-based instruments will be deployed at this measurement site.



Fig. 4: Overview of the AGROMET site.



Fig. 5: 360° pictorial overview of the AGROMET site

#### 1.3.2 Ile-Ife





Fig. 6: Instruments deployed at Ile-Ife

# 1.4 Time line

The measurement period at the supersites lasts from 13 June – 31 July 2016. The aircraft field campaign will take place from 27 June – 17 July 2016.

The setup of the instruments at Savé will start around  $30^{\text{th}}$  May and the teardown will end around  $7^{\text{th}}$  August.

For Kumasi site setup will commence around 5<sup>th</sup> June and teardown will end around 7<sup>th</sup> August.

At Ile-Ife supersite, which is the same location for the permanent meteorological station, OAU-Met, the measurements will begin in January 2016. In consonance with the scheduling for the field measurement phase of DACCIWA (WP1), data capture will run

from April 1st, 2016 till end of August 2016. Beyond August 2016, record of the field data will still be continued.

# 2 Instrumentation

In this section, the ground-based instrumentation at the three supersites Savé, Kumasi and Ile-Ife is listed. For details on the instrument see Appendix A. Based at Lome in Togo three research aircrafts will be operated during the three weeks of the aircraft campaign. The aircrafts are BAS Twin Otter (UK), Safire ATR42 (France) and DLR Falcon 20 (Germany). Details on these research aircrafts can be found on the DACCIWA sharepoint.

# 2.1 Savé



Fig. 7: Instrumentation map at Gobe site.

Table 3: Surface measurements.

| Instrument             | Operator | Measured parameters                               |
|------------------------|----------|---------------------------------------------------|
| Energy balance station | KIT      | Q, H, E, B, SW, LW, SM,<br>ST, T, RH, P, wind, RF |

# **Energy balance station and** UPS chemistry tower

Q, H, E, B, SW, LW, SM, ST, T, RH, P, wind, prec, BF, CCC

- Q: Net radiation
- H: Sensible heat flux
- E: Latent heat flux
- B: Soil heat flux
- SW: Short-wave radiation components
- LW: Long-wave radiation components
- SM: Soil moisture
- ST: Soil temperature
- T: Air temperature
- **RH:** Relative Humidity
- P: Pressure
- prec: Precipitation
- BF: biogenic fluxes (NO, NO2, isoprene turbulent fluxes)
- CCC: Chemical Compound Concentration of O3, NO, NO2, CO, isoprene

| Table 4: Measurements in t | the boundary l | layer and above |
|----------------------------|----------------|-----------------|
|----------------------------|----------------|-----------------|

| Instrument        | Operator | Measured parameters                                                                                                                                         |
|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sodar             | KIT      | Horizontal wind profile (0-<br>600 m)                                                                                                                       |
| UHF wind profiler | UPS      | Horizontal wind profile (200 - 4000 m)                                                                                                                      |
| Wind lidars       | KIT      | Radial velocity<br><i>WindTracer</i> : scanning or<br>vertical stare (400-10000<br>m, depending on aerosol<br>concentration)<br><i>Windcube</i> : (0-600 m) |

| Microwave radiometer         | KIT | Temperature and humidity profiles, IWV, LWP, CBT |
|------------------------------|-----|--------------------------------------------------|
| Radiosondes (normal RS       | UPS | T, RH, P, wind profiles                          |
| and frequent RS)             |     | Normal RS: 0-20 km                               |
|                              |     | Frequent RS: 0-2 km                              |
| IWV: Integrated water vapour |     |                                                  |
| LWP: Liquid water path       |     |                                                  |

CBT: Cloud base temperature

Table 5: Measurements of cloud characteristics and precipitation

| Instrument        | Operator | Measured parameters                   |  |
|-------------------|----------|---------------------------------------|--|
| Cloud radar       | KIT      | Radial velocity, cloud top            |  |
| Ceilometer        | KIT      | Cloud base                            |  |
| X-Band radar      | KIT      | Precipitation                         |  |
| MRR, distrometers | KIT      | Precipitation, drop size distribution |  |
| Cloud camera      | UPS      | Cloud cover                           |  |

| Instrument            |         | Operator                 | Measured parameters                                                |
|-----------------------|---------|--------------------------|--------------------------------------------------------------------|
| Grimm<br>spectrometer | aerosol | KIT                      | Particle concentration for<br>particle sizes from 0.25 to<br>32 µm |
| Sun photometer        |         | KIT & University Reading | Aerosol optical depth<br>(normal mode and cloud<br>mode)           |

|                                  | <b>RPAS</b> Aladina                                                                                                                                                                                                                         | RPAS OVLI                                                                                           |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Operator                         | TU Braunschweig                                                                                                                                                                                                                             | LA                                                                                                  |
| Location                         | Savé airfield                                                                                                                                                                                                                               | Gobe site                                                                                           |
| Meteorological<br>parameters     | T, RH, P, wind, fluxes                                                                                                                                                                                                                      | T, RH, P, wind                                                                                      |
| Dimensions                       | 3.6 m x 2 m                                                                                                                                                                                                                                 | Small                                                                                               |
| Weight                           | 25 kg                                                                                                                                                                                                                                       | 2.5 kg                                                                                              |
| Maximum wind speed               | 15 m/s                                                                                                                                                                                                                                      | 7-8 m/s                                                                                             |
| Air speed                        | 25 m/s                                                                                                                                                                                                                                      | 10 m/s                                                                                              |
| Clouds                           | No (maybe touch bottom)                                                                                                                                                                                                                     | Maybe (try)                                                                                         |
| Night                            | Yes                                                                                                                                                                                                                                         | No                                                                                                  |
| Operation duration for 1 mission | <ul> <li>45 min / 1 flight, 10-20</li> <li>min between flights, max.</li> <li>10 flights per mission, ~10</li> <li>h max</li> </ul>                                                                                                         | 90 min / flight (minimum,<br>with thermic maybe<br>longer), 2 planes in turn to<br>fly continuously |
| Measurement strategy             | Fluxes along constant<br>height flight legs; 1 profile<br>at the beginning to get<br>profiles of wind,<br>temperature and humidity<br>Leg's length according to<br>the pilot (RPAS must be<br>visible). Flight in a 1 km-<br>radius circle. | Helicoidal Profiles                                                                                 |

# 2.2 Kumasi

Table 8: Surface measurements

| Instrument             | Operator | Meteorological<br>parameters        |
|------------------------|----------|-------------------------------------|
| Energy balance station | NCAS     | Q, H, E, B, SW, LW, SM,<br>ST       |
| Flux station           | NCAS     | TS, P, U, V, W, H20, CO2,<br>TL, DT |
| AWS                    | NCAS     | T, RH, PP, WS, WD, PPT              |

- Q: 1Hz Net radiation
- H: 1Hz Sensible heat flux
- E: 1Hz Latent heat flux
- B: 1Hz Soil heat flux
- SW: 1Hz Short-wave radiation components
- LW: 1Hz Long-wave radiation components
- SM: 1Hz Soil moisture
- ST: 1Hz Soil temperature
- T: 5 min Air temperature
- PP: 5 min pressure
- WS: 5 min horizontal wind
- WD: 5 min horizontal wind direction
- PPT: 5 min precipitation
- RH: 5 min Relative Humidity
- P: 20Hz Pressure
- H20: 20Hz water vapour concentration
- CO2: 20Hz carbon dioxide concentration
- U,V,W: 20Hz wind speed components
- TS: 20Hz sonic temperature
- TL: 20Hz licor air temperature
- DT: 20Hz licor dew point temperature

## Table 9: Measurements in the boundary layer and above

| Instrument                        | Operator | Meteorological<br>parameters                     |
|-----------------------------------|----------|--------------------------------------------------|
| Sodar                             | NCAS     | Horizontal wind profile (0-600 m), CT2           |
| Microwave radiometer              | NCAS     | Temperature and humidity profiles, IWV, LWP, CBT |
| Radiosondes (normal and frequent) | NCAS     | T, RH, P, wind profiles                          |
| IWV: Integrated water vapour      |          |                                                  |
| LWP: Liquid water path            |          |                                                  |

CBT: Cloud base temperature

Table 10: Measurements of cloud characteristics and precipitation

| Instrument   | Operator | Meteorological<br>parameters               |
|--------------|----------|--------------------------------------------|
| Ceilometer   | NCAS     | Coud base, aerosol backscatter coefficient |
| MRR          | NCAS     | Precipitation, drop size distribution      |
| Cloud camera | NCAS     | Cloud cover                                |

#### Table 11: Aerosol measurements

| Instrument     | Operator | Meteorological<br>parameters |
|----------------|----------|------------------------------|
| Sun photometer | NCAS     | Optical depth                |

# 2.3 Ile-Ife

Table 12: Surface measurements

|                             | 0 (       |                                                     |
|-----------------------------|-----------|-----------------------------------------------------|
| Instrument                  | Operator  | Meteorological                                      |
|                             |           | parameters                                          |
| Energy balance station      | OAU       | Q, H, E, B, SW, LW, SM,<br>ST, T, RH, P, wind, prec |
| 15-m tower                  | OAU       | T, RH, P, wind (multilevels)                        |
| Q: Net radiation            |           |                                                     |
| H: Sensible heat flux       |           |                                                     |
| E: Latent heat flux         |           |                                                     |
| B: Soil heat flux           |           |                                                     |
| SW: Short-wave radiation co | omponents |                                                     |
| LW: Long-wave radiation co  | omponents |                                                     |
| SM: Soil moisture           |           |                                                     |
| ST: Soil temperature        |           |                                                     |
| T: Air temperature          |           |                                                     |
| RH: Relative Humidity       |           |                                                     |
| P: Pressure                 |           |                                                     |
| prec: Precipitation         |           |                                                     |

## Table 13: Measurements in the boundary layer and above

| Instrument          | Operator  | Meteorological                        |
|---------------------|-----------|---------------------------------------|
|                     |           | parameters                            |
| Sodar               | OAU       | Horizontal wind profile (0-<br>600 m) |
| Tethered radiosonde | OAU & KIT | T, RH profiles                        |

Table 14: Measurements of cloud characteristics and precipitation

| Instrument | Operator | Meteorological |
|------------|----------|----------------|
|            |          | parameters     |

| Handhold infrared<br>radiometer | OAU & KIT | Cloud base temperature |
|---------------------------------|-----------|------------------------|
| Rain gauge                      | OAU       | precipitation          |

## Table 15: Aerosol measurements

| Instrument     | Operator | Meteorological<br>parameters |
|----------------|----------|------------------------------|
| Sun photometer | OAU      | Aerosol optical depth        |

# 3 Measurement Strategy

Continuous measurements will be performed throughout the whole measurement period. This includes all instrumentation except the normal and frequent radiosoundings, the RPASs and the research aircrafts.

# 3.1 Non-IOPs

During the whole measurement period there will be one radiosounding per day in the morning, i.e. when the low-level cloud cover is most intense, to get a statistic of atmospheric conditions. The sonde is launched 30 min prior the hour, i.e. the 0600 UTC sonde is launched at 0530 UTC.

# 3.2 IOPs

In total we plan on about 20 IOPs. Around 10 IOPs will be during the aircraft campaign, 5 before and 5 after the aircraft campaign. IOPs will always be at all supersites (even if the conditions are less favourable at one of the sites).

## 3.2.1 IOP definition

WP1-related IOPs focus on NLLJ, stratus, dissolving stratus and convective cumulus (type A) or on clear calm conditions with no MCS or other large-scale influences but no stratus and/or NLLJ (type B). WP1-related IOPs are out of rainy days and MCS perturbations.

#### 3.2.2 IOP during and outside aircraft campaign

An IOP day (D) starts in the evening of D-1 and lasts until the evening of D. There will be 5 normal radiosoundings (NRS) with 6-hour intervals, the first one will be launched at 1730 UTC on D-1 and the last one at 1730 UTC on D. Maybe skip the first sounding at 1730 UTC on D-1 if we find out there are no important changes between 1730 and 2330 UTC.

During the aircraft campaign, frequent radiosoundings (FRS) will be performed between 2130 UTC on D-1 and 0930 UTC on D in hourly intervals. At 2330 and 0530 UTC there will be normal radiosondes instead of frequent radiosondes.

Outside the aircraft campaign, FRS will be performed between 2130 UTC on D-1 and 1030 UTC on D in hourly intervals, i.e. 1 hour later in the morning than within the aircraft campaign, to account for the missing profile flights from the RPAS OVLI. At 2330 and 0530 UTC there will be normal radiosondes instead of frequent radiosondes.



Fig. 8: IOP schedule during aircraft campaign.



Fig. 9: IOP schedule outside the aircraft campaign.

During the aircraft campaign, the RPAS Aladina will fly during three possible periods. The first period is when the nocturnal low-level jet (NLLJ) forms. The second period is when there is stratus and the third period is when the stratus is breaking. Detailed flight patterns are given in the next section. Two of these patterns will be chosen for each IOP according to the focus of the IOP.

The RPAS OVLI will perform profiles to get atmospheric conditions in the boundary layer when the frequent radiosoundings stop in the morning.

When the research aircrafts are approaching the supersites, the aircraft crew will get in contact with supersites (science director) via satellite telephone (sea Important contact information). During fly by, the RPAS and radiosounding activities will be interrupted, i.e. the RPAS will stay on the ground (away from the runway).

# 3.3 Scan strategy for remote sensing instruments at Savé

#### 3.3.1 Microwave radiometer

With the microwave radiometer we intend to get information on the integrated water vapour (IWV) in vertical stare mode with high temporal resolution, on the horizontal distribution of humidity and on the temperature profile in the lower atmosphere. Therefore, we perform a combination of PPIs, boundary layer scans and vertical stare mode.

For the beam to be above the surrounding vegetation the PPIs are performed at  $15^{\circ}$  (? try) elevation angle. Along the beam we derive IWV and liquid water path (LWP). Assuming

moist air approaching Savé in the lowest 2000 m, the moist air could first be detected at about 7.5 km distance from Savé. If the moist air propagates with 5 m s<sup>-1</sup> the time between the first detection and the arrival at Savé will be about 25 min (see Fig. 7). After about 50 min moist air would be within the whole measurement range. This means in order to capture the direction of the advection of moist air, PPIs should be performed at least every 30 min.



Fig. 10: Schematic diagram to illustrate the PPI of the microwave radiometer at Savé



Fig. 11: Time line of the scan strategy performed with the microwave radiometer at Savé.

With this scan strategy we get the spatial humidity distribution, temperature profiles of the lower atmosphere with a temporal resolution of about 30 min and sufficient information about IWV and LWP in vertical stare mode with a temporal resolution of about 1 s.

#### 3.3.2 Wind lidars

The wind lidar *Windcube* is operated in vertical stare mode to provide vertical wind speed with high temporal resolution in the lowest 600 m.

With the scanning wind lidar *WindTracer* we intend to measure vertical wind speed with high temporal resolution and to get information about the 3-dimensional structure of gravity waves during the night and convective cells during the day. In order to get information about gravity waves, RHI scans in mean wind direction are needed. Convective cells form in streaks during the day. Thus, it is better to perform RHI scans perpendicular to the mean wind direction during the day to cut through the streaks. We do not need the wind lidar to derive the horizontal wind speed profile, as we have the sodar and UHF.

We perform a combination of RHI scans and vertical stare mode. In vertical stare mode the measurement range is from 350 to 3000 m with a vertical range resolution of 25 m and a temporal resolution of 1 s RHI scans will be performed every 30 minutes in a sector of  $60^{\circ}$  with an increment of  $30^{\circ}$  in and perpendicular to the mean wind direction (Figs. 12 and 13).



Fig. 12: Schematic diagram of RHI scans performed with the wind lidar WindTracer and the cloud radar at Savé.



Fig. 13: Time line of scans performed with the wind lidar WindTracer and the cloud radar at Savé.

#### 3.3.3 Sodar

The sodar provides horizontal wind speed profiles in the lowest 600 m with a vertical resolution of 10 m and a temporal resolution of 30 min.

#### 3.3.4 UHF

The UHF wind profiler provides the three wind components, the boundary layer height, the turbulent kinetic energy dissipation with 75 m of vertical resolution and 10 minutes of temporal resolution between 200 and 4000m.

#### 3.3.5 Cloud radar

With the cloud radar we intend to measure to vertical structure in clouds as well as spatial variability of clouds. Therefore, we perform a combination of RHI scans and vertical stare mode similar to the wind lidar. In vertical stare mode the cloud radar provides vertical wind speed profiles from 150 m to 15000 m (depending on the backscatter concentration) at a vertical resolution of 30 m and a temporal resolution of 10 s. During RHI the cloud radar scans between 45 and 115° elevation angle. RHI scans will be performed every 30 minutes in a sector of 60° with an increment of 30° in and perpendicular to mean wind direction (Figs. 12 and 13).

#### 3.3.6 MRR

Because the  $0^{\circ}$  C level is often between 500 and 600 hPa in Africa (roughly 4000-6000 m) range intervals of 200 m are chosen. With a total of 32 ranges it then measures up to 6400 m. The temporal resolution is 1 min.

#### 3.3.7 X-band rain radar

The X-band rain radar performs a volume scan every 5 minutes using 10 elevation angles between 0.5 and 30°. Its maximum range is 100 km.

#### 3.4 RPAS at Savé

#### 3.4.1 General information

The objectives of the UAV operation at Savé is (i) to get profiles of the lower atmosphere when no frequent radiosoundings are performed (OVLI) and (ii) to get flux profiles during

the night (with LLJ and clouds/ no clouds) and during the day in the cloud-topped boundary layer (Aladina).

At the beginning of each flight we fly a profile up to about 700 m (depending on the actual conditions) or the cloud base. After that, we fly a L-pattern with one leg parallel to the mean wind and the other leg perpendicular to the mean wind in order to account for anisotropy. Each leg should be as long as possible (~2 km).

Based on BLLAST measurements we estimates the times for this flight pattern: a leg of 2 km takes about 120 s (2 min); changing the flight level by 200 m takes about 2 min; a profile from the surface up to 700 m takes about 5 min.

The time estimates for a possible flight pattern is: Profile up to 700 m + 3 heights with 200 m height difference with a L-pattern =  $5 \min + 18 \min = 23 \min$ 



Fig. 14: General L-pattern of RPAS Aladina.

#### 3.4.2 Specific flight patterns

#### Nocturnal low-level jet (NLLJ, Fig. 15)

4 levels: 1 level in the surface layer (100 m); 1 level in the sheared layer below jet nose (100 m below jet nose); 1 level in the jet nose; and 1 level in the sheared level above jet nose (100 m above the jet nose).

The levels change according to the jet nose height.

Stratus (Fig. 16)

2 or 3 levels: 1 level in the surface layer (100 m); 1 level below the cloud base (50 m). If cloud base is above 600 m, fly an additional level at half the cloud base height (i.e. if cloud base is at 600 m fly legs at 50, 300, and 550 m above ground).

The levels change according the cloud base height.

#### **Breaking stratus (Fig. 17)**

3 levels: 1 level in the surface layer (100 m); 1 level at half the cloud base height; 1 level below the cloud base (50 m if possible).



LLJ to be expected between 200 and 400 m agl

Fig. 15: Flight pattern of RPAS Aladina for NLLJ.



Fig. 16: Flight pattern for RPAS Aladina for nocturnal stratus.



Fig. 17: Flight pattern for RPAS Aladina for breaking stratus and convective clouds.

## 3.5 Scan strategy for remote sensing instruments at Kumasi

#### 3.5.1 Microwave radiometer

With the microwave radiometer we intend to get information on the integrated water vapour (IWV) and high spatial resolution of the humidity and temperature profile in the lower atmosphere: a combination of boundary layer scans and vertical stare mode will be used will therefore be used with boundary layer scans being performed every 30 min.

#### 3.5.2 Sodar

The sodar provides horizontal wind speed profiles in the lowest 600 m with a vertical resolution of 10 m and a temporal resolution of 30 min.

#### 3.5.3 MRR

Because the  $0^{\circ}$  C level is often between 500 and 600 hPa in Africa (roughly 4000-6000 m) range intervals of 200 m are chosen. With a total of 32 ranges it then measures up to 6400 m. The temporal resolution is 1 min.

## 3.6 Scan strategy for remote sensing instruments at lle-lfe

#### 3.6.1 Sodar

The sodar provides horizontal wind speed profiles in the lowest 600 m with a vertical resolution of 10 m and a temporal resolution of 30 min.

## 3.7 Research aircrafts

WP1-related flight patterns of the three research aircrafts are the stratus flights, land-sea breeze flights (LSB) and biogenic emission flights. During these flight patterns IOPs are performed at all three supersites. Details on these flight patterns can be found on the DACCIWA sharepoint in the folder Aircraft Campaigns.

## 4 Coordination and Organisation

At each supersite there will be a log book (electronic) which includes information on maintenance, instrument status (running or not, number of sondes available, number of helium bottles available, ...).

Every day the facility status for each instrument is reported on the SEDOO website (green for running; yellow for an unknown status; red for not-running). Quicklooks are also sent to the SEDOO website (see Section 5).

## 4.1 IOP planning

Every morning the forecaster prepares a detailed weather forecast for the next two days and an outlook for the period afterwards. The forecaster provides a short overview with the most important information and plots and distributes this to the three supersites. There will be only one forecaster, either from the Kumasi or the Savé site, preparing the forecast for all three supersites. At 1400 UTC the weather forecast is discussed at the individual supersites. At 1500 UTC the supersites communicate per phone, compare the results of their discussions and agree on whether there should be an IOP alert on D-2 for Day D.

If there was an IOP alert on day D-2, the final IOP decision is made at 1500 UTC on day D-1. The IOP is cancelled in case of unexpected disturbances, e.g. due to a MCS at all supersites or unavailability of important instruments (facility status). If the IOP is not cancelled the IOP starts at 1730 UTC on day D-1, i.e. the first radiosonde at Kumasi and Ghana will be launched at 1730 UTC on day D-1.

During the weather forecast on day D it is decided if there is an IOP alert for day D+2.

During the aircraft campaign we send our forecast including our recommendation for an IOP on day D to the operation centre on day D-2 (per email or upload it to <u>http://dacciwa.sedoo.fr/</u>). In the morning briefing at the operation centre on day D-1, the operation center decides if there is an aircraft IOP on day D.



Fig. 18: Time line of IOP planning.

## 4.2 Forecast tools

Forecast products from ECMWF and Met Office are available on http://dacciwa.sedoo.fr/.

NCAS runs the WRF model for the area around the supersites. Quicklooks are found at <u>https://sci.ncas.ac.uk/dacciwa/</u>

This site is password protected and access details will be disseminated accordingly when the operations commence. The model is run daily with products becoming available around 0800 UTC.

| Site           | Position                  | Phone                              |
|----------------|---------------------------|------------------------------------|
| Savé station:  | Science director          | +4915225625896<br>and +22995471459 |
|                | Operation director<br>KIT | +4915227058481<br>and +22995471460 |
|                | Operation director<br>UPS | +22995471520                       |
| Kumasi station | Science director          |                                    |
|                | Operation director        |                                    |
|                | Sonde Operations          |                                    |

# 4.3 Important contact information

| Ile-Ife station |                  | +234-8034007146  |
|-----------------|------------------|------------------|
|                 |                  | +234-8055305482  |
| Lome            | Operation center |                  |
| SAFIRE ATR      | Aircraft         | +881 622 403 606 |
| DLR Falcon      | Aircraft         | +881 621 464 884 |
| BAS TO          | Aircraft         | +881 651 431 217 |

# 4.4 Assignment of tasks

#### 4.4.1 Savé

At Savé, there are several positions which need to be filled by the team. Instead of assigning persons to each positions in advance it might be better to only include positions in this operation plan. Phone numbers of the science and operations directors are included in Sect. 5.3.

Table 16: Overview of tasks that need to be filled at Savé. Science director and operation directors are in contact with other supersites and operation center.

| Science director                  | Responsible for running of site, deals with general problems / issues arising. Contact person for othe WP1 super sites and operation center in Lome. |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Operation directors (KIT,<br>UPS) | Responsible for instrument status, logbook, circulation of information for decision making and reports and quicklooks;                               |  |  |
| Forecaster                        | Preparation of detailed weather forecast                                                                                                             |  |  |
| Radiosondes                       | In charge of operation of radiosondes (normal and frequent)                                                                                          |  |  |
| RPAS                              | Responsible for RPAS operation (one person for Aladina and one person for OVLI).                                                                     |  |  |

#### 4.4.2 Kumasi

| Science director    | Responsible for running of site, deals with general<br>problems / issues arising. Contact person for other<br>WP1 super sites. |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Operation directors | Responsible for instrument status, logbook, circulation of information for decision making and reports and quicklooks.         |  |
| Radiosondes         | In charge of operation of radiosondes (normal and frequent)                                                                    |  |
| Forecaster          | Preparation of detailed weather forecast                                                                                       |  |

#### 4.4.3 Ile-Ife

Table 17: Overview of tasks already filled at Ile-Ife. Science director and operation directors are in contact with other supersites and operation center.

| Science director<br>Gbenga Jegede            | Responsible for running of site, deals with general<br>problems / issues arising. Contact person for other<br>WP1 super sites and operation center in Lome. |  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Operation directors (OAU)<br>Muritala Ayoola | Responsible for instrument status, logbook, circulation of information for decision making and                                                              |  |  |
| Lukman Sunmonu                               |                                                                                                                                                             |  |  |
| Weather forecast                             | Preparation of weather forecast.                                                                                                                            |  |  |
| NIMET/Francis                                |                                                                                                                                                             |  |  |
| Tethered radiosondes                         | In charge of operation of tethered radiosonder                                                                                                              |  |  |
| Muritala Ayoola                              | (normal and frequent)                                                                                                                                       |  |  |
| Ground-operations (OAU)                      | Ground operations: In charge of instruments at                                                                                                              |  |  |
| Adewale Ajao                                 | ground.                                                                                                                                                     |  |  |

# 4.5 Staff

## 4.5.1 Save

| Last name     | First<br>name      | Affiliation | City, Country            | Email                                       |
|---------------|--------------------|-------------|--------------------------|---------------------------------------------|
| Adler         | Bianca             | KIT         | Karlsruhe,<br>Germany    | bianca.adler@kit.edu                        |
| Bärfuss       | Konrad             | TUBS        | Braunschweig,<br>Germany |                                             |
| Bezombes      | Yannick            | UPS         | Karlsruhe,<br>Germany    | yannick.bezombes@aero.obs-<br>mip.fr        |
| Bret          | Guillaume          | UPS         | Toulouse,<br>France      | guillaume.bret@aero.obs-mip.fr              |
| Bretschneider | Lutz               | TUBS        | Braunschweig,<br>Germany |                                             |
| Brilouet      | Pierre-<br>Etienne | UPS         | Toulouse,<br>France      | pierre-etienne.brilouet@aero.obs-<br>mip.fr |
| Delon         | Claire             | UPS         | Toulouse,<br>France      | claire.delon@aero.obs-mip.fr                |
| Deny          | Bernhard           | KIT         | Karlsruhe,<br>Germany    | bernhard.deny@kit.edu                       |
| Derrien       | Solène             | UPS         | Toulouse,<br>France      | solene.derrien@aero.obs-mip.fr              |
| Diallo        | Binta              |             |                          |                                             |
| Dione         | Cheikh             | UPS         | Toulouse,<br>France      | cheikh.Dione@aero.obs-mip.fr                |
| Durand        | Pierre             | UPS         | Toulouse,<br>France      | pierre.durand@aero.obs-mip.fr               |
| Gabella       | Omar               | UPS         | Toulouse,<br>France      | omar.gabella@aero.obs-mip.fr                |
| Gamer         | Timo               | KIT         | Karlsruhe,<br>Germany    | timo.gamer@kit.edu                          |
| Handwerker    | Jan                | KIT         | Karlsruhe,<br>Germany    | jan.handwerker@kit.edu                      |
| Haid          | Maren              | KIT         | Karlsruhe,<br>Germany    | maren.haid@student.kit.edu                  |
| Jambert       | Corinne            | UPS         | Toulouse,<br>Germany     | corinne.jambert@aero.obs-mip.fr             |

| Tan Jerome | Nicholas | KIT  | Karlsruhe,<br>Germany      | nicholas.jerome@kit.edu          |
|------------|----------|------|----------------------------|----------------------------------|
| Kalthoff   | Norbert  | KIT  | Karlsruhe,<br>Germany      | norbert.kalthoff@kit.edu         |
| Endres     | Kathe    | TUBS | Braunschweig,<br>Germany   |                                  |
| Kohler     | Martin   | KIT  | Karlsruhe,<br>Germany      | martin.kohler@kit.edu            |
| Kraut      | Stephan  | KIT  | Karlsruhe,<br>Germany      | stephan.kraut@kit.edu            |
| Kunka      | Norbert  | KIT  | Karlsruhe,<br>Germany      | norbert.kunka@kit.edu            |
| Lampert    | Astrid   | TUBS | Braunschweig,<br>Germany   | Astrid.lampert@tu-bs.de          |
| Leclercq   | Jeremy   | UPS  | Toulouse,<br>France        | jeremy.leclercq@aero.obs-mip.fr  |
| Lohou      | Fabienne | UPS  | Toulouse,<br>France        | fabienne.lohou@aero.obs-mip.fr   |
| Lothon     | Marie    | UPS  | Toulouse,<br>France        | marie.lothon@aero.obs-mip.fr     |
| Medina     | Patrice  | UPS  | Toulouse,<br>France        | patrice.medina@aero.obs-mip.fr   |
| Pedruzo    | Xabier   | WU   | Wageningen,<br>Netherlands | xabier.pedruzobagazgoitia@wur.nl |
| Reinares   | Irene    | UPS  | Toulouse,<br>France        | irene.reinares@aero.obs-mip.fr   |
| Scheer     | Simone   | KIT  | Karlsruhe,<br>Germany      | simone.scheer@kit.edu            |
| Seringer   | Jürgen   | KIT  | Karlsruhe,<br>Germany      | juergen.sehringer@kit.edu        |
| Wieser     | Andreas  | KIT  | Karlsruhe,<br>Germany      | andreas.wieser@kit.edu           |

# 4.5.2 Kumasi

| Last name | First<br>name | Affiliation | City,<br>Country | Email |
|-----------|---------------|-------------|------------------|-------|
|           |               |             |                  |       |

| Brooks    | Barbara  | NCAS | Leeds, UK | barbara.brooks@ncas.ac.uk |
|-----------|----------|------|-----------|---------------------------|
| Smith     | Victoria | NCAS | Leeds, UK | victoria.smith@ncas.ac.uk |
| Bessardon | Geoffrey | UoL  | Leeds, UK | eegb@leeds.ac.uk          |

## 4.5.3 Ile-Ife

| Last name    | First<br>name | Affiliation | City, Country    | Email                       |
|--------------|---------------|-------------|------------------|-----------------------------|
| Abiye        | Olawale       | OAU         | Ile-Ife, Nigeria | waleabiye@gmail.com         |
| Ajao         | Adewale       | OAU         | Ile-Ife, Nigeria | iyiolamercy2005@yahoo.com   |
| Akpootu      | Davidson      | OAU         | Ile-Ife, Nigeria | profdon03@yahoo.com         |
| Ayoola       | Muritala      | OAU         | Ile-Ife, Nigeria | rayola40@yahoo.com          |
| Babatunde    | Dimeji        | OAU         | Ile-Ife, Nigeria | oae.babatunde@gmail.com     |
| Boboye       | Isaac         | OAU         | Ile-Ife, Nigeria | iboboye@yahoo.com           |
| Francis      | Sabastine     | OAU         | Ile-Ife, Nigeria | sabasdekaa@yahoo.com        |
| Imasogie     | Osasu         | OAU         | Ile-Ife, Nigeria | imasgoddy@gmail.com         |
| Jegede       | Gbenga        | OAU         | Ile-Ife, Nigeria | oojegede@yahoo.com          |
| Obisesan (F) | Dara          | OAU         | Ile-Ife, Nigeria | obisesanomodara@gmail.com   |
| Ogunwale     | Ayodeji       | OAU         | Ile-Ife, Nigeria | onileolaayo@gmail.com       |
| Omokungbe    | Opeyemi       | OAU         | Ile-Ife, Nigeria | omokungbeopeyemi@yahoo.com  |
| Soneye (F)   | Lanre         | OAU         | Ile-Ife, Nigeria | olarenwaju.soneye@gmail.com |
| Sunmonu      | Lukman        | OAU         | Ile-Ife, Nigeria | sunmonula@yahoo.co.uk       |

# 5 Quicklooks and data

## 5.1 Realtime

Quicklooks are uploaded to <u>http://dacciwa.sedoo.fr/.</u> There will be no uniform output format, but all quicklooks have to be clear and self-explanatory.

The quicklooks sent daily to the SEDOO website should not be taken as validated data.

Radiosonde data will go to GTS: Kumasi via Met Office, Savé via Meteo France.

#### 5.1.1 Savé

The quicklooks (for KIT instruments) will mostly be generated automatically during the night and send to the SEDOO website.

| Instrument                         | Quicklook type                                                                                     | Upload time /<br>interval      |
|------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|
| Radiosonde<br>(normal)             | skewTlogp diagram                                                                                  | After each sounding            |
| Radiosonde<br>(frequent)           | skewTlogp diagram                                                                                  | Once per day after midnight    |
| Energy balance<br>(KIT)            | Daily time series of Q, H, E, B, T, RH,<br>u, v, w                                                 | Once per day after midnight    |
| Energy balance and chemistry tower | Daily time series of Q, H, E, B, T, RH, u, v, w                                                    | Once per day after midnight    |
| Microwave radio-<br>meter          | Daily time series of IWV, LWP,<br>temperature and humidity vertical<br>profiles                    | Once per day after<br>midnight |
| Cloud radar                        | Daily time series of vertical profiles of<br>radial velocity, LDR, reflectivity,<br>spectral width | Once per day after midnight    |
| Ceilometer                         | Daily time series of cloud base height and raw data                                                | Once per day after midnight    |

Table 18: Quicklooks provided during the field campaign

| Wind lidar<br>(WindTracer)         | Daily time series of radial velocity and SNR vertical profiles                                                   | Once per day after<br>midnight<br>30 min              |
|------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Wind lidar<br>( <i>Windcube</i> )  | Daily time series of radial velocity vertical profiles                                                           | Once per day after midnight                           |
| Sodar                              | Daily time series of horizontal wind profiles                                                                    | Once per day after midnight                           |
| UHF profiler                       | Height-time cross section of horizontal<br>wind, vertical velocity, CN2,<br>dissipation over the three last days | Once per day after midnight                           |
| X-band radar                       | Max CAPPI                                                                                                        | 30 min                                                |
|                                    | precipitation sum                                                                                                | Once per day after midnight                           |
| Sun photometer                     | IWV, aerosol optical depth                                                                                       | Once per day after midnight                           |
| Sky imager (UPS)                   | Full sky image                                                                                                   | Once per day after<br>midnight/ 1 every<br>15 minutes |
| Aerosol<br>spectrometer<br>(GRIMM) | Time series of total aerosol amount                                                                              | Once per day after midnight                           |
| OVLITA RPAS                        | Vertical profiles of T, RH, wind                                                                                 | Once per flying day<br>after midnight on<br>D+1       |
| ALADINA RPAS                       | Preliminary screenshots: vertical profiles of T and RH                                                           | Once per flying day                                   |

## 5.1.2 Kumasi

Table 19: Quicklooks provided during the field campaign.

| Instrument | Quicklook type | Upload time /<br>interval |
|------------|----------------|---------------------------|
|            |                |                           |
| Radiosonde(normal&frequent)      | skewTlogp diagram<br>profiles of WS, WD, T DT                              | After each sounding     |
|----------------------------------|----------------------------------------------------------------------------|-------------------------|
| Energy balance &<br>Flux station | Daily time series of Q, H, E, B, T, RH,<br>u, v, w, CO2, H2O, WS,          | Once per day            |
| Microwave<br>radiometer          | Daily time series of IWV, LWP, temperature and humidity profiles           | Once per day            |
| Sodar                            | time series of SNR profiles and winds                                      | Once per day            |
| MRR                              | Rain Rate, Accumulated rain, profiles of droplet spectrum, fall speed, dBz | hourly                  |
| Cloud camera                     | Image                                                                      | Every minute            |
| Ceilometer                       | Profile of backscatter, cloud base height                                  | hourly                  |
| AWS                              | Time series of surface PP, T, RH, WS, WD, PPT                              | Updated every 5<br>mins |

# 5.1.3 lle-lfe

Table 20: Quicklooks provided during the field campaign.

| Instrument             | Quicklook type                                                                                 | Upload time /<br>interval |
|------------------------|------------------------------------------------------------------------------------------------|---------------------------|
| Tethered<br>radiosonde | T, RH profile                                                                                  | After each sounding       |
| Sodar                  | Daily time series of horizontal wind profile                                                   | Once per day              |
| Energy balance         | Daily time series of Q, H, E, B, T, RH,<br>u, v, w, short and longwave radiation<br>components | Once per day              |
| Sun photometer         | Daily measurements of aerosol optical depth                                                    | Once per day              |
| Infrared<br>radiometer | Daily measurements of cloud base temperature                                                   | Once per day              |

| 15-m tower | Daily time series of wind, T, RH at 5 | Once per day |
|------------|---------------------------------------|--------------|
|            | levels                                |              |

# 5.2 Post-processing

All observational data will need post-processing and validation before being sent to the DACCIWA data base after the campaign, independent of the instrument.

Uniform processing of data (energy balance, microwave radiometer, ...) after the campaign will be done as much as possible. Microwave radiometer data will be processed at KIT with retrievals from University of Cologne. Energy balance and flux calculations will be done with TK3 software at KIT.

# Appendix A: Meta data of instruments at Save

A.1 Instruments of KIT



#### **Energy balance stations**

To record the incoming radiance energy at the earth surface, so called energy balance stations are used. These stations measure the components of the radiance balance (global radiation, reflected radiation, incoming and outgoing long wave radiation), the sensible and latent heat flux as well as the soil heat flux.





Fig.1: Energy balance station to register the energy conversion of the  $$\operatorname{ground}$ 

Fig.2: Ultrasonic anemometer and Lyman-Alpha hygrometer of a energy balance station



Fig. 3: Radiance measuring instruments on an energy balance station

| Specifica | ation of energy balance               | e                                   |                                 |                                                                      |                       |
|-----------|---------------------------------------|-------------------------------------|---------------------------------|----------------------------------------------------------------------|-----------------------|
| Quantity  | Device                                | Туре                                | Manufacturer                    | Variable                                                             | Measuring<br>Height   |
| 1         | Sonic anemometer                      | Solent-R2                           | Gill                            | wind vector,<br>temperature,<br>momentum flux,<br>sensible heat flux | 4 m                   |
| 1         | Barometer                             | Model 276                           | Setra                           | air pressure (P)                                                     | 1 m                   |
| 1         | Pyranometer                           | Net Pyranometer<br>Albedometer CM14 | Kipp & Zonen                    | global raiation,<br>reflected irradiance                             | 3 m                   |
| 1         | Pyrgeometer                           | CGR3                                | Kipp & Zonen                    | long-wave incoming<br>radiation, outgoing<br>long-wave radiation     | 3 m                   |
| 3         | Heat flux plates                      | Heatflux Ramco HP3                  | McVAN<br>Instruments PTY<br>LTD | soil heat flux                                                       | -0.05 m               |
| 1         | Infrared thermometer                  | KT15                                | Heimann                         | surface temperature                                                  |                       |
| 1         | Temperature<br>and humidity<br>sensor | НМР35А                              | Vaisala                         | air temperature, relative humidity                                   | 3 m                   |
| 1         | Inclinometer                          | Inclinometer                        | Seika                           | inclinometer                                                         | 4 m                   |
| 1         | Rain gauge                            | Ombrometer HP                       | Thies                           | precipitation                                                        | 1 m                   |
| 3         | SISOMOP                               | SMT100                              |                                 | soil temperature,<br>soil moisture                                   | -0.1, -0.3,<br>-0.5 m |
| 1         | Humidity and carbon dioxide sensor    | Li-Cor 7500                         | LI-COR                          | CO2 / H20, latent heat<br>flux, CO2 flux                             | 4 m                   |



#### **Doppler-Wind-LIDAR**



Fig. 1: Scanner of the WindTracer

The LIDAR technology is one of the most advanced techniques for active remote sensing of the atmosphere. The term LIDAR is an acronym for LIght Detection And Ranging and thus leant on the better-known RADARacronym. Unlike the radio waves used there, the LIDAR technique uses electromagnetic waves, however, with much shorter wavelengths. These pulses of light were emitted into the atmosphere and reflected there by molecules and aerosol particles. Depending on the specific realization of the LIDAR system, information about the aerosol backscattering cross section, the extinction, the depolarization ratio (and thus the shape of the spreader), but also about the wind, the temperature as well as the concentration of water vapor and other trace gases can be derived from the backscatter signal.



Fig. 2: "WindTracer" systems delivered in 2004 (rear) and 2009 (front). Both systems are installed on loading bridges, allowing easy transportation.

The IMK-TRO LIDAR Network consists of three ground-based Doppler LIDAR systems that are specifically designed to measure wind. The measuring technique is based on the Doppler effect which describes the frequency shift of light which is scattered on moving objects. The centerpiece of the network are two "WindTracer" systems manufactured by Lockheed Martin Coherent Technologies: a 2µm system delivered in 2004 and a 1.6 µm system from 2009. Both systems have a 2axis scanner, which allows for arbitrary scan patterns covering the whole upper hemisphere. Under optimum conditions the devices are able to measure the wind in 120 Rangegates in distances up to 15 km away from the measurement system. The effective pulse length of the devices, and thus a lower limit for the spatial resolution, is about 56 m and 45 m respectively. Both systems work with the same control and processing software which allows for operation as a dual-Doppler system. The construction-conditioned measurement gap of the "WindTracers" in an area of about 350 m distance from the device will be closed by the third Doppler system: a "Windcube" manufactured by Leosphere with a wavelength of 1.54  $\mu$ m. The "Windcube" is able to measure the wind field in a range of 40 to 500 meters away from the device . Depending on the scanning method used, vertical profiles of horizontal and vertical wind velocity can be measured and turbulence quantities such as variances, spectra, integral length scales or dissipation rates can be determined. Additionally based on the signal-to-noise ratio a high-resolution determination of the boundary layer height is possible, which also allows the visualization of small scale processes entrainment at the upper edge of the boundary layer. By combining the two "WindTracer systems dual-Doppler techniques and thus a comprehensive representation of 3rd dimensional wind fields become possible .Additionally the precise wind measurements of the LIDAR network can be used for the evaluation of model results and the applicability of current scientific methods. A small selection of images to illustrate the potential of the LIDAR Network can be found below.



Fig. 3: So-called Plan-Position-Indicator scans (PPI) measure along conical cross sections. Here an example measured during the COPS field campaign (2007) is shown. This method gives an impression of the 3D wind field, bearing in mind that the wind can always be determined only in the beam direction



Fig. 4: Using well-known algorithms (VAD), the measured wind information during a PPI scan can be used to determine vertical profiles of horizontal windspeed and direction.



Fig. 5: High-resolution measurements of the signal-to-noise ratio and the vertical wind speed provide the ability to detect variations in the boundary layer height at different temporal scales: small-scale events in the order of less than 10 m, which can be associated with entrainment processes but also complete diurnal variations of the atmospheric boundary layer can be measured. Here are two examples of the CSIP field campaign, 2005.



#### HATPRO microwave radiometer

HATPRO (Humidity and Temperature Profiler) At IMK-TRO we operate two scanning passive microwave radiometers (HATPRO, Humidity and Temperature Profiler) designed by Radiometer Physics Gmbh. The instruments are part of KITcube and are deployed during various field

campaigns. The instruments measure sky brightness temperature at 14 frequencies (7 frequencies between 22 und 31 GHz (K-band) along the wing of the 22.235 GHz rational water-vapour line und 7 frequencies between 51 und 58 GHz (V-Band) along the wing of the 60 GHz oxygen absorption complex). From these measurements temperature and humidity profiles as well as the integrated liquid water path (LWP) and the integrated water vapour content (IWV) are obtained. In addition, an infrared radiometer detects the temperature of the cloud base.





#### Measurement exampe

The two figures show results from the field campaign HyMeX on 23 September 2012 at Corte on the island of Corsica. In the figure on the left hand side the temporal evolution of potential temperature is shown and the figure on the right displays the temporal evolution of IWV.



#### Technical specifications (manufacturer`s data)

| Type:                   | Passive microwave radiometer                                                                   |  |
|-------------------------|------------------------------------------------------------------------------------------------|--|
| Manufacturer:           | Radiometer Physics Gmbh                                                                        |  |
| Frequencies:            | K-band: 22.24 GHz, 23.04 GHz, 23.84 GHz, 25.44 GHz, 26.24 GHz, 27.84 GHz, 31.4 GHz             |  |
|                         | V-band: 51.26 GHz, 52.28 GHz, 53.86 GHz, 54.94 GHz, 56.66 GHz, 57.3 GHz, 58.0 GHz              |  |
| Band width:             | 2000 MHz @ 58.0 GHz, 1000 MHz @ 57.3 GHz, 600 MHz @ 56.66 GHz, 230 MHz @ all other frequencies |  |
| Temperature<br>profile: | Vertical resolution:                                                                           |  |
|                         | BL-Mode: 50 m (range 0-1200 m)                                                                 |  |
|                         | Z-Mode: 200 m (range 1200-5000 m); 400 m (range 5000-10000 m)                                  |  |
|                         | Accuracy:                                                                                      |  |
|                         | 0,25 K RMS (range 0-500 m)                                                                     |  |
|                         | 0,50 K RMS (range 500-1200 m)                                                                  |  |
|                         | 0,75 K RMS (range 1200-4000 m)                                                                 |  |
|                         | 1,00 K RMS (range 4000-10000 m)                                                                |  |
| Humidity profile:       | Vertical resolution:                                                                           |  |
|                         | 200 m (range 0-2000 m)                                                                         |  |
|                         | 400 m (range 2000-5000 m)                                                                      |  |
|                         | 800 m (range 5000-10000 m)                                                                     |  |
|                         | Accuracy:                                                                                      |  |
|                         | 0,4 g/m <sup>3</sup> RMS (absolute humidity)                                                   |  |
|                         | 5% RMS (rel. humidity)                                                                         |  |
| LWP:                    | Accuracy: +/- 20 g/m <sup>2</sup>                                                              |  |
|                         | Noise: 2 g/m <sup>2</sup> RMS)                                                                 |  |
| IWV:                    | Accuracy: +/-0,2 kg/m <sup>2</sup>                                                             |  |
|                         | Noise: 0,05 kg/m <sup>2</sup> RMS                                                              |  |
| Weight                  | 60 kg (without dew blower)                                                                     |  |
| Dimensions:             | 63 x 36 x 90 cm <sup>3</sup>                                                                   |  |



MIRA36-S cloud radar





Fig.1: MIRA36-S cloud radar (Metek Comp., Elmshorn, Germany) Fig.2: MIRA36-S cloud radar, in field campaign.



Fig.3: Measurment of Z, w and LDR.

#### Technical data:

time = 0.1 s:

Radar Type: Mono static, pulsed, magnetron Frequency: 35.5 GHz ± 0.2 GHz Peak Power: 30 kW max 1:500; typically 1:1000 Duty Cycle: Pulse Width: 100, 200, and 400 ns according to 15, 30, and 60 m range resolution 150 m, full sensitivity -6 dB above 300 m, full Minimum Range: sensitivity-1.5 dB above 400 m, full sensitivity above 500 m Maximum Measuring Range: 500 range gates = 15 km / 30 m 0.02 m/s Doppler Velocity Resolution: 2.5 kHz, 5kHz, and 10 kHz, Pulse repetition frequency (PRF): velocity un-ambiguity of 11 - 42 m/s FFT Length: 128, 256, 512, 1024 Minimum Averaging Time: Moments of instantaneous spectra can be evaluated without skipping samples if NFFT > 128. ADC for sampling the I-Q-Signals: 50 MHz / 14 Bit Antenna Type: Cassegrain Diameter of Antenna: 1.2 m Antenna Beam Width (6 dB/two-way): 0.52° x 0.52° 50.4 dBi Antenna Gain: -35 dB Polarisation isolation: Precision for Antenna Positioning: 0.1° Scan range azimuth direction: -183°...+183° elevation direction: -45°...+45° Scan velocity (max), both directions: 10°/s 10°/s² Acceleration (max), both directions: 3.4 dB (LNA) Receiver Noise Figure (LNA + following): Losses: 2.3 dB (T-R-switch), 0.4 dB (waveguides receiving path), 0.9 dB (w.g. + circ. transmitting path) Sensitivity at 5 km, PRF=5 kHz, 200 ns, NFFT=256, averaging -44 dBZ



#### Ceilometer

Institute of Meteorology and Climate Research - Troposphere Research

Ceilometer CHM15k determines up to three layers the cloud base and penetration. In addition, the temporal variability of these parameters and a vertical perspective were determined.

All this data were determinded from the uncalibrated signal of a vertically aligned lidar. The spatial resolution amounts to 15 m, the time can be selected freely, normally we use 1 minute.

The ceilometer determines the cloud base edges in a frequency range close to the visible one, so that it achieves the same result as it would have a human observer. The cross-section of backscattered cloud droplets are proportional to their surface. In contrast, the backscatter cross-section at the frequencies of (cloud-)radars is proportional to the diameter d<sup>6</sup>. Therefore a few large droplets suffice to feign a lower cloud base to the radar.

The graph below shows a day's measurement, which was executed in Massada, near to the dead sea in isreal. The coloured code corresponds the 10-times of 10th-logarithm of backscattered energie. White points show the cloud base edges.



Fig. 1: Ceilometer during transport

Fig. 2: Measurement of Ceilometer

#### Technische Parameter:

| Range:                        | 30 m to 15000 m (realistic minimum level rather at 150 m or 300 m)                                   |
|-------------------------------|------------------------------------------------------------------------------------------------------|
| Spatial resolution:           | 15 m                                                                                                 |
| Test time:                    | 5 s to 60 min, mostly 60 s                                                                           |
| Measure:                      | Backscatter, deduced: Cloud heights up to 3 layers, penetration/cloud thickness, vertical visibility |
| Measurement principle:        | Lidar                                                                                                |
| Wavelenght:                   | 1064 nm                                                                                              |
| Spread:                       | 0,1 nm                                                                                               |
| Pulse lenght:                 | ca 1 ns                                                                                              |
| Pulse rate:                   | 5-7 kHz                                                                                              |
| Beam diameter, widened:       | 90 mm                                                                                                |
| Laser divergency:             | 100 µrad                                                                                             |
| Energy per pulse:             | ۲۹ 8                                                                                                 |
| Maximal power<br>consumption: | 0,8 kW                                                                                               |



## X-band rain radar

The X-band rain radar Meteor50DX is mounted on a car trailer and thus mobile. It operates at a wavelength of 3 cm, thus it does not fulfil the criterions of Rayleigh scattering (scatterer much smaller than wavelength) for large rain drops, snow or hail. The beamwidth is 1.35°. Besides reflectivity it provides radial velocity, differential reflectivity, differential phase and the correlation coefficient between horizontal and vertical polarisation.



## Technical specifications:

| Frequency:           | 9370 MHz                                            |
|----------------------|-----------------------------------------------------|
| Wavelength:          | 3 cm                                                |
| Pulse modes:         | 4                                                   |
| Pulse duration:      | 0.3 μs 3.3 μs                                       |
| PRF:                 | 250 Hz to 2500 Hz                                   |
| Antenna beam width:  | 1.35°                                               |
| Diameter of antenna: | 1.8 m                                               |
| Antenna gain:        | 42.5 dB                                             |
| Scan range:          | azimuth direction: 0° 360°                          |
|                      | elevation direction: $-6^{\circ} \dots 182^{\circ}$ |
| Pulse power:         | 55 kW min., 75 kW typ.                              |
| MDS:                 | -103 dBm to -113 dBm (depends on pulse duration)    |
| Linear dynamic range | 90 dB                                               |
| Weight:              | 2800 kg                                             |



MRR

#### Institute of Meteorology and Climate Research - Troposphere Research



Fig. 1: The K-band Doppler Radar FCMW

#### Specifications of K-Band FCMW Dopplerradar

| frequency :                                  | 24.230 GHz                      |
|----------------------------------------------|---------------------------------|
| wavelength :                                 | 1.24 cm                         |
| mode :                                       | FM-CW (sawtooth with downsweep) |
| Duration of a sawtooth:                      | 0.514 ms                        |
| sawtooth frequency :                         | 1953 Hz                         |
| Continuously radiated power :                | 50 mW                           |
| Diameter of the parabola :                   | 60 cm                           |
| Beamwidth (-3-dB single-border) :            | 1.5 Grad                        |
| near-field distance :                        | ~ 20 m                          |
| Sidelobes :                                  | <-20 dB                         |
| sampling frequency of the A / D converter :  | 31.25 kHz                       |
| Discrete data points per FFT :               | 1024                            |
| Frequency sweeps per FFT (N) :               | 64                              |
| Period of an FFT :                           | 33 ms                           |
| Nyquist frequency :                          | 15.625 kHz                      |
| Discrete frequencies of the power spectrum : | 512                             |
| Frequency resolution: :                      | 30.25 Hz                        |
| Speed resolution :                           | 0.19 m/s                        |
| Number of height steps :                     | 32 (of which 30 are usable)     |
| Speed channels per level:                    | 64                              |
| Altitude resolution:                         | 10-200 m (adjustable)           |
| Number of spectra in a 10-s average          | 138                             |
| Averaging time for the output :              | 10-3600 s (adjustable)          |
| For Manufacturer :                           | Fa. Metek, Elmshorn             |
|                                              |                                 |



Distrometer



Fig.1: The diagram shows the drop spectrum of derived value Z and R for one day . Basis are minute value respectively.

#### Specifications of RD-69 disdrometer

Droplet diameter: 0.3 mm to 5 mm Measurement surface: 50 cm<sup>2</sup>

Relationship between droplet diameter D and amplitude of the output signal:

| U <sub>compr.</sub> :                             | $U_{compr.} = 0.94 D^{1.47}$                     |
|---------------------------------------------------|--------------------------------------------------|
|                                                   | (U <sub>compr.</sub> in Volts, D in millimeters) |
| accuracy:                                         | +/- 5% of measured drop diameter                 |
| Operating voltage:                                | 115/230 V AC, 50-400 Hz, 5 VA                    |
| Operating temperature:                            | 0 °C to 40 °C                                    |
| Dimensions:                                       |                                                  |
| -transducer:                                      | 10 cm x 10 cm x 17 cm                            |
| -processor:                                       | 10 cm x 23 cm x 27 cm                            |
| Weight:                                           |                                                  |
| -transducer:                                      | 2.4 kg                                           |
| -processor:                                       | 1.8 kg                                           |
| Length of cable between transducer and processor: | 10 m                                             |
| For Manufacturer:                                 | Fa. DISTROMET LTD, Basel                         |



Fig. 2: The Joss-Waldvogel disdrometer

#### specifications of PARSIVEL-Distrometer

| Wavelength of the laser diode:          | 780 nm                   |
|-----------------------------------------|--------------------------|
| Power of the laser diode:               | 3 mW                     |
| Dimensions of the skylight (W x H x D): | 160 mm x 1 mm x 30 mm    |
| Measurement surface:                    | 48 cm <sup>2</sup>       |
| Diameter range of hydrometeors*:        | 0.2 - 25 mm              |
| Speed range of hydrometeors*:           | 0.1 - 20 m/s             |
| weight:                                 | 15 kg                    |
| Power supply:                           | 12 V, 600 mA             |
| interface:                              | RS 232                   |
| For Manufacturer:                       | Ott Messtechnik, Kempten |



Fig. 3: The PARSIVEL-disdrometer

\* Hydrometeors = droplets and / or ice particles



#### Grimm aerosol spectrometer

The aerosol spectrometer continuously measures in real time particles in 31 different size channels and present the data as:

- The aerosol spectrometer continuously measures in real time particles in 31 different size channels and present the data as Particle Size Concentration
- Particle Mass Distribution

Like all GRIMM 1100 series spectrometers, this instrument can be operated by battery and/or AC, it stores the results on a removable data logger card and collects the sampled aerosol on a removable 47mm filter. It also has an internal storage capacity of 80kb.



Specifications:

| Measuring principle:  | Scattering laser light and filter collection                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------|
| Measuring range:      | 0.25 to 32 $\mu$ m in 31 channel sizes                                                                |
| Particle counts:      | 1 to 2,000,000 particles/litres                                                                       |
| Channels:             | $0.25 \ / \ 0.28 \ / \ 0.3 \ / \ 0.35 \ / \ 0.4 \ / \ 0.45 \ / \ 0.5 \ / \ 0.58 \ / \ 0.65 \ / \ 0.7$ |
|                       | / 0.8 / 1 / 1.3 /1.6 / 2.0 / 2.5 / 3.0 / 3.5 / 4 / 5 / 6.5 / 7.5 /                                    |
|                       | $8.5$ / 10 / 12.5 / 15 / 17.5 / 20 / 25 / 30 / 32 $\mu m$                                             |
| Dust mass:            | $0.1 > 100,000 \ \mu g/m3$                                                                            |
| Sample flow:          | 1.2 liter/minute, volume controlled                                                                   |
| Reproducibility:      | $\pm$ 3% in max. range                                                                                |
| Power requirement(s): | Battery power or 220/110 VAC                                                                          |
| Size:                 | 24 x 12 x 6 cm (9.5 x 5 x 02.5 in)                                                                    |
| Weight:               | 2.5 kg (5.5 lbs)                                                                                      |
|                       |                                                                                                       |



## Sun photometer

The operated sun photometer is a Cimel CE 318 TP9. The photometer automatically follows sun or moon depending on the mode. Using irradiance measurements the aerosol optical thickness can be derived at certain wavelengths. Polarisation filters additionally provide information about type and shape of the aerosols.





#### Specifications:

| Accuracy of irradiance measurement: | < 0.1 %                      |
|-------------------------------------|------------------------------|
| Field of sight:                     | 1.3°                         |
| Spectral range:                     | 340-1640 nm                  |
| Mechanical accuracy of position:    | 0.003°                       |
| Power consumption:                  | < 2 W                        |
| Total weight:                       | 25 kg                        |
| Modes:                              | Sun, sky, moon               |
| Operation range:                    | -30 – 70 °C (temperature)    |
|                                     | 0 - 100% (relative humidity) |

# A.2 Instruments of UPS





# MODEM – Normal Radiosoundings Super Site Savé

# Laboratoire d'Aérologie (LA) PI: Solène Derrien, Fabienne Lohou

<u>Objectives:</u>

MODEM radio sounding system allows to acquire a profile of thermodynamic parameters such as temperature, humidity, wind speed and wind direction. The system of the Centre de Recherches Atmosphériques (LA) is a SR2K2-P from MODEM Company, used with M10 sondes.

As an in situ observation, radio sounding is still a reference measurement for atmospheric profiles in comparison to remote sensing.

MODEM SR2K2-P consists in:

- an acquisition bench (electronic and laptop)
- a ground check box (with reference sensors)
- radio and GPS antennas

The sondes are M10 model with a temperature sensor, a humidity sensor, a GPS card, a radio card and batteries for power supply.



Figure: MODEM Radio sounding System

#### Principe:

Usable radio frequencies are from 400 to 406 MHz (meteorological band). It allows the bench and the sondes to communicate together.

3D GPS module provides the position of the sonde (latitude, longitude, and altitude) as well speed components (North-South, East–West and Z). These data are correlated to time. Position is calculated every second by triangulation method between 4 or more satellites.

Velocity is not calculated from the difference between 2 positions but directly issued from Doppler. On short time scales, velocity is more accurate than position when it becomes less accurate on large time scales. MODEM system takes in account both measurement methods in order to provide the most accurate data.

These data are compared to GPS reference station (Differential GPS) in order to clear satellites disturbances and eventual interferences .

Ground pressure is measured by a pressure sensor in the bench, and is calibrated each year.

Pressure is calculated from ground pressure, GPS altitude, temperature and humidity according to barometric equation (Laplace law).

Temperature is measured by a thermistor chip wrapped into a glass ball. Its tiny size (0,9 x 2 mm) allows excellent response time around 1 to 1,3 sec. Temperature sensor is led on a layer processed against humidity and solar radiations. Boom end undergoes a special vacuum metallization process reducing both solar and infrared radiation effects. Solar radiation correction is less than 1.5°C at 23 hPa

Humidity is measured by a capacitor of which value is directly proportional to relative humidity. It is composed of 3 primary components: (i) Basic layer as an electrode, (ii) A dielectric of which characteristics vary along relative humidity, (iii) A short response porous electrode as the second electrode of the capacitor. A cap is protecting the sensor from rain and mechanical damage

Temperature and humidity are checked before launch thanks to reference sensors in the ground check box, containing a GPS repeater for indoor initialization.

#### Technical characteristics:

| General features |                              |
|------------------|------------------------------|
| Dimensions       | Width : 95 mm                |
|                  | Length : 95 mm               |
|                  | Height: 88.5 mm              |
| Weight           | 150g (including batteries)   |
| Pressure         |                              |
| Method           | Calculated from GPS altitude |
| Range            | 1100 to 3 hPa                |
| Accuracy         | ±1 hPa at Surface            |
| -                | ±0.1 hPa at 60 hPa           |
| Temperature      |                              |
| Sensor           | Thermistor                   |
| Range            | +60° to -100°                |

| Resolution          | 0.01°C          |
|---------------------|-----------------|
| Accuracy            | 0.3°C           |
| Response time       | < 1s            |
| Measurement rate    | 1 Hz            |
| Calibration         | Yes             |
| Factory calibration | Stored on EPROM |

# Humidity

| Sensor              | Capacitor       |
|---------------------|-----------------|
| Range               | 0% to 100%      |
| Resolution          | 0.1%            |
| Accuracy            | 3%              |
| Response time       | < 2s            |
| Measurement rate    | 1 Hz            |
| Calibration         | Yes             |
| Factory Calibration | Stored on EPROM |
|                     |                 |

# Wind

| Differential calculation |
|--------------------------|
| Unlimited                |
| 10 m                     |
| 0.15 m/s                 |
| 1 °                      |
| 0.01 m                   |
| 0.01 m/s                 |
| 0.1 °                    |
| 1 Hz                     |
|                          |





# Frequent and sonde-reusable radiosounding system

Super Site Savé

Laboratoire d'Aérologie (LA)

# PI: Solène Derrien, Fabienne Lohou

A MODEM sounding system radiosonde (see Normal Radiosounding System) is used with one balloon for the ascent (white one in the picture) and one balloon for the descent (red one in the picture). The first balloon is separated after a preset time of ascent. The second balloon set the falling rate. Ascent and fall rates can be preset with the volume of helium used to inflate the balloons.





*Figure: On the left the sonde with the ascent (white) and descent (red) balloons. On the right, the sonde MODEM M10 with its protection.* 

A team of two persons is needed to search the sonde with a radio-receiver antenna. The GPS coordinates of the last point recorded fix the location from where the search starts. The red balloon also helps to locate the sonde.





# Super Site Savé

Laboratoire d'Aérologie (LA)



Figure: Surface station for energy balance and biogenic fluxes.

# Meteorological and surface measurements

# PI: Solène Derrien, Fabienne Lohou

LA will deploy a complete surface energy balance and a biogenic fluxes station based on well known eddy correlation technique. Fluxes are computed with a one day delay with the Eddy-pro software

Sensors and sampling for Meteorological parameters and surface characteristics

| Parameter                                | Sensor                                  | Sampling<br>frequency<br>(or period) | Height of measurement |
|------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------|
| Wind direction                           | WTX 520 Campbell                        | 1 min                                |                       |
| Wind speed                               |                                         | ±                                    |                       |
| Wind component U                         |                                         |                                      |                       |
| Wind component V                         | CSAT 3 sonic anemometer                 | 10 Hz                                |                       |
| Wind component W                         |                                         | 10 112                               |                       |
| Sonic temperature                        |                                         |                                      |                       |
| Specific humidity flux and               |                                         |                                      |                       |
| concentration                            | LICOR 7500                              | 10 Hz                                |                       |
| CO2 concentration flux and               |                                         | 10 112                               | TBD                   |
|                                          | WTY 520 Comphell                        |                                      | according             |
| Deletive Uveridity                       | WTX 520 Campbell                        |                                      | vegetation            |
| Relative Humidity                        | wix 520 Campbell                        |                                      |                       |
| radiometer                               |                                         |                                      |                       |
| Outgoing global radiation                |                                         |                                      |                       |
| Incoming global radiation                | CNR4 KIPP & ZONEN                       | 1 min.                               |                       |
|                                          |                                         |                                      |                       |
| radiation                                |                                         |                                      |                       |
| Incoming longwave                        |                                         |                                      |                       |
| radiation                                |                                         |                                      |                       |
| Pressure                                 | Barometer RPT410F                       |                                      | TBD m                 |
| Photosynthetic Active<br>Radiation (PAR) | PQS1 KIPP & ZONEN                       | 1 min                                |                       |
| Soil water content                       | CS616 campbell                          | 15 min.                              | -5 cm<br>-10 cm       |
| Soil temperature                         | 107 campbell                            | 1 min.                               | -1 cm                 |
|                                          | WTX 520 campbell                        | 1 min.                               |                       |
| Rainfall                                 | ARG100 Environmental                    | 1 min                                |                       |
|                                          | Measurement Ltd                         | ± 111111.                            |                       |
|                                          | HUSKEFLUX HFP01 (3?)                    | <u> </u>                             |                       |
| Soll neat flux                           | 2 sensors in a large area for better    | 1 min.                               | -1 cm                 |
|                                          | Samping<br>S15D Mobotix (visible and IP |                                      |                       |
| Full sky camera                          | camera)                                 | 2 min.                               | 8 m                   |
| L                                        | ,                                       | 1                                    | 1                     |

# Chemistry measurements PI: Solène Derrien, Corinne Jambert, Claire Delon

Sensors and sampling for chemistry

| Parameter                          | Sensor        | Sampling<br>frequency<br>(or period) | Height of<br>measurement |
|------------------------------------|---------------|--------------------------------------|--------------------------|
| CO concentration                   | 48C TL TEI    | 10 sec.                              |                          |
| O3 concentration                   | 49i TEI       | 10 sec.                              | TBD<br>according         |
| NO2/NO flux and concentration (1)  | 42C TL TEI    | 10 sec.                              | vegetation               |
| Isopren flux and concentration (2) | FIS + ozoneur | 10Hz                                 |                          |
| NOx/ NH3 soil flux (3)             | 17i TEI       | 15 min                               |                          |

- (1) Concentration and flux estimated by Disjonct Eddy Covariance (DEC) method
- (2) Concentration and flux estimated by Eddy Covariance method
- (3) Concentration and flux estimated by a Chamber method





# Remotely Piloted Aerial System Super Site Savé

# Laboratoire d'Aérologie (LA) PI: Patrice Medina, Marie Lothon



Figure : RPAS OVLITA

|                     | OVLITA                      |
|---------------------|-----------------------------|
| Dimensions          | 2.6 m x 1.7 m               |
| weight              | 3 kg                        |
| Measured parameters | Temperature, humidity, wind |
| Maximum wind to fly | 7-8 m/s                     |
| Nighttime flight    | No                          |
| Flight duration     | 90 min                      |

Sensors and sampling for Meteorological parameters and surface characteristics

| Parameter        | Sensor                       | Sampling<br>frequency<br>(or period) |
|------------------|------------------------------|--------------------------------------|
| Wind direction   | E bala proba i IMUEdaf i CBS | 20 hz                                |
| Wind speed       |                              | 20 112                               |
| Wind component U |                              | 20 hz                                |

| Fast Temperature<br>Fast Humidity | SHT75               | 10 hz<br>10 hz |
|-----------------------------------|---------------------|----------------|
| Slow Temperature                  | SHT75               | 2.5 hz         |
| Slow Humidity                     | SHT75               | 2.5 hz         |
| GPS                               | MediaTek GPS MT3329 | 5 hz           |
| Air speed UAS                     | Fisrt sensor        | 20 hz          |
| Wind component UAS                | Fisrt sensor        | 20 hz          |
| IMU10F                            | ADIS16448           | 20 hz          |

LA will deploy three UAS as OVLI-TA for temperature and humidity sounding. Altitude, Temperature and Humidity are remotely control. Wind vector are calculated after landing. The plane will flight following waypoint define before the fly.









# UHF (Ultra High Frequency) wind profiler Savé Supersite

# Laboratoire d'Aérologie (LA) PI: Y. Bezombes, M. Lothon B. Campistron, L. Cabanas, S. Derrien



#### Objective :

The UHF (Ultra High Frequency) wind profiler provides information on the atmospheric dynamics at meso and small scale in the lower troposphere. It supplies vertical profile of the three components of the wind, in both clear air and cloudy air or rain, at 75 m vertical resolution, from 150 m to around 3000 m a.g.l, and every 5 or 15 minutes. (Vertical cover depends on the moisture in the low troposphere, and can range from 1000 m to 6000 m a.g.l.)

This radar also allows the study of the atmospheric boundary layer, with estimates of the boundary layer top inversion or strong gradients, and of the kinetic energy dissipation rate. The momentum flux can be estimated with some hypotheses.

## Principle:

The principle is based on active remote sensing: a 1274 MHz electromagnetic wave is emitted with pulses in the atmosphere in five different directions alternatively, and backscattered by the fluctuations of the refractive index of the air, by biological fragments, large dust particles, insects or precipitations. The received power is related to the atmospheric turbulence or to the drop size distribution of the backscattering particles. The Doppler velocity measured along each beam allows the measurement of the three components of the mean wind. The Doppler spectral width enables to estimate the intensity of turbulence or some characteristics of the precipitation, depending on the source of the received echo.

## Technical characteristics :

| Characteristics of the location             |                                      |
|---------------------------------------------|--------------------------------------|
| Location                                    | SAVE                                 |
| Coordinates Longitude :                     | 8.00102° N                           |
| (WGS84) Latitude :                          | 2.42785° E                           |
| Altitude of the ground from sea level (m)   | 166m                                 |
| Antenna height above the ground (m)         | 0.5m                                 |
| Minimum elevation angle ( ° )               | 73°                                  |
| Maximum elevation angle ( ° )               | 90°                                  |
| Vertical cover                              | 200 m to 3000 m a.g.l                |
| Temporal resolution                         | ~ 5 minutes                          |
| Characteristics of the transmitter/receiver |                                      |
| Frequency (MHz) :                           | 1274 Mhz                             |
| Peak power at antenna port (dBW)            | 3,5 kW                               |
| Wavelengh                                   | 23.6 cm                              |
| Radial resolution                           | 75 m and 150m                        |
| Modulation type:                            | Gaussian                             |
| Characteritics of the modulation            | Sweep period 500 ns, 1 µs and 2,5 µs |
| Characteristics of the antenna              |                                      |
| Antenne type                                | coaxial collinear antenna            |
| Antenna Gain (dBi)                          | 25 dBi                               |
| Number of antenna beams                     | 5                                    |
| Antenna area                                | 2 x 2 m <sup>2</sup>                 |
| Beamwidth                                   | 8.5°                                 |
| Polarisation                                | Vertical                             |
| Rotation speed (rpm) (min and max)          | Fixed antenna                        |

# A.3 Instruments of TUBS





## **Unmanned Aerial System "Carolo P360" ALADINA**

#### Fact Sheet

June 2014



#### P360

The fully automatically operating Carolo P360 aircraft is the largest and most powerful member of the Carolo family of Unmanned Aerial Systems (UAS) developed at the Institute of Aerospace Systems, TU Braunschweig. The aircraft has a maximum take-off weight of 25 kg and a wing span of 3.60 m.

The electrical pusher engine configuration leaves the nose free for special meteorological sensors. A combustion engine is generally compatible with the P360, but is not used for ALADINA. A large payload bay (350 x 310 x 190 mm) allows carrying various kind of instrumentation with a maximum weight of 2.5 kg. The P360 is built following a modular concept. The front compartment, wings and elevator unit can be assembled and disassembled within 15 min. Between two flights, the exchange of battery packs and saving of data takes less than 10 minutes. The battery system for the engine consists of two Li-lon battery packs with a combined capacity of about 20 Ah.

Every electric subsystem (engine, autopilot/actuators, aerosol instrumentation/ meteorology/GPS/IMU) has its own power supply and can be operated stand-alone.

No additional equipment like a winch system or catapult is necessary for take-off. A landing gear fixed on the fuselage offers an easy handling to launch and land the aircraft on flat surfaces (e.g. grass, asphalt and snow). The terrain requires a dimension of approximately 60 x 25 m depending on wind conditions and the pilot's experience. The P360 can be operated up to a wind speed of 15 m/s.

Takeoff and landing is performed manually, while the flight mission can be controlled by autopilot.

ALADINA is able to operate at night equipped with the appropriate lighting, upon permission of the local civil aviation authorities (CAA).

#### **Technical specifications**

- Maximum take-off weight
- Wing span
- Fuselage length
- Typical cruising speed
- Endurance (level flight)
- Climb performance
- Ceiling
- Standard telemetry system
- Remote control system
- Operational ambient temperature 0

25 kg (including payload) 3.60 m 1.8 m 25 – 28 m/s (90 – 100 km/h) > 40 min (for 20°C) 6 m/s 2.5 km 2.4 GHz Graupner MX20 0 ... + 40°C

#### Autopilot

ALADINA can be operated automatically by the autopilot system ROCS (Research Onboard Computing System), which is provided by the Institute of Flight Mechanics and Control of the University Stuttgart. ALADINA follows the flight pattern which was sent to the aircraft before take-off. Within the telemetry range of 1.5 km, the ground staff is able to follow and monitor the position, attitude and speed of the aircraft. Changes of the waypoints and altitudes are possible during the mission within that range.

#### ALADINA

In the case of ALADINA (Application of Light-Weight Aircraft for Detecting In-situ Aerosol), the P360 is equipped with meteorological sensors and aerosol instrumentation. The development of ALADINA was realized in a joint research program funded by the German Research Foundation: The aircraft itself was prepared by TU Braunschweig, the miniaturization and implementation of the aerosol

sensors was done by the Leibniz Institute of Tropospheric Research, and the meteorological sensors, data acquisition and telemetry downlink for real-time data transfer were developed by the Eberhard-Karls Universität Tübingen. The integration of the sensors into the aircraft is shown below.



ALADINA payload: 1 five-hole probe, 2 temperature and humidity sensor, 3 aerosol inlet, 4 temperature sensor, 5 GPS antenna, 6 telemetry antenna b) 7, 8, 9 aerosol instruments

ALADINA is capable of measuring the atmospheric parameters temperature, wind speed and direction, as well as the aircraft parameters position, attitude and altitude with high temporal resolution (20 Hz). The relative humidity and the aerosol number concentration for different size classes are recorded with a resolution of 1 Hz.

# Appendix B: Meta data of instruments at Kumasi

| Flux Tower 1a             | 2m                                       |                                                                                                                                                   |
|---------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| logger                    | Campbell Scientific<br>CR5000            |                                                                                                                                                   |
| 3 x soil temperature      | Campbell Scientific 107                  | Temperature measurement range: -<br>55°C to +70°                                                                                                  |
| probes                    | Temperature Probe                        | Thermistor interchangeability error:*<br><±0.18°C over -25 to +50°C<br><±0.3°C over -55 to +70°C                                                  |
|                           |                                          | CRBasic instruction linearisation<br>error: <±0.03°C over -55 to +70°C                                                                            |
|                           |                                          | Bridge resistor errors:* <±0.13°C over<br>-25 to +50°C (worst case) <±0.35°C<br>over -55 to +70°C                                                 |
| 3 x soil moisture probes  | Campbell Scientific 253<br>soil Moisture | Range: 0 to -2 bars (0 to 200 kPa)<br>Dimensions<br>Length: 3.25 inches (8.26 cm)<br>Diameter: 0.75 inches (1.91 cm)<br>Weight: 0.8 lbs (362.9 g) |
| 3 x self calibrating soil | Campbell Sceintific                      | Sensor Type: Thermopile with film                                                                                                                 |
| heat flux plates          | HFP01SC self calibrating                 | Sensitivity (nominal): 50 µV W-1 m-2                                                                                                              |
|                           | soil heat flux plates                    | Nominal Resistance: 2 $\Omega$                                                                                                                    |
|                           |                                          | Temperature Range: -30° to +70°C                                                                                                                  |
|                           |                                          | Expected Accuracy: ±3% of reading                                                                                                                 |
|                           |                                          | Heater Resistance: 100 $\Omega$ (nominal)<br>Heater Voltage Input: 9 to 15 Vdc                                                                    |
|                           |                                          | Heater Voltage Output: 0 to 2 Vdc                                                                                                                 |
|                           |                                          | Duration of Calibration: ±3 minutes<br>@ 1.5 W;                                                                                                   |
|                           |                                          | typically performed every 3 to 6 hours                                                                                                            |
|                           |                                          | Average Power Consumption: 0.02 to 0.04 W                                                                                                         |
|                           |                                          | Plate Thickness: 5 mm (0.20 in)                                                                                                                   |
|                           |                                          | Weight without cable: 200 g (7.05<br>oz)                                                                                                          |
| 4 component radiation     | Hukseflux NR01 – 10 4                    | Measurand                                                                                                                                         |
| -                         | component radiation                      | Measurand                                                                                                                                         |
|                           | _                                        | reflected solar radiation                                                                                                                         |
|                           |                                          | hemispherical solar<br>radiation                                                                                                                  |
|                           |                                          | Measurand<br>downward longwave                                                                                                                    |
|                           |                                          | radiation <sup>*</sup><br>Measurand                                                                                                               |
|                           |                                          | upward longwave                                                                                                                                   |
|                           |                                          | Optional measurand<br>surface temperature*                                                                                                        |
|                           |                                          | Optional measurand                                                                                                                                |
|                           |                                          | Optional measurand                                                                                                                                |
|                           |                                          | albedo or solar reflectance<br>Required readout                                                                                                   |
|                           |                                          | 4 x DC voltage,                                                                                                                                   |
|                           |                                          | Calibration traceability solar<br>to WRR                                                                                                          |
|                           |                                          | Calibration traceability longwave to WISG                                                                                                         |
|                           |                                          | Spectral range solar<br>285 to 3000 x 10 <sup>-9</sup> m                                                                                          |
|                           |                                          | Spectral range longwave<br>4.5 to 40 x 10 <sup>-6</sup> m                                                                                         |
|                           |                                          | Rated operating temperature range<br>-40 to 80 °C                                                                                                 |

| Temperature sensor    |
|-----------------------|
| Pt100                 |
| Heater                |
| 12 VDC, 1.5 W         |
| Standard cable length |
| 5 m (see options)     |
| * Required measurand  |
| instrument body       |
| temperature           |

| Flux Tower 1b    | 10 feet          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IA420 logger     | Moxa IA240       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GPS              | Garmin GPS 18X   | RMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sonic anemometer | Metek usonic 3   | Ambient conditions-40 + 60 °C,<br>5 100%<br>Average time / number 1 3600 s/<br>1 65365 samples<br>Sampling rate 0.1 30/50 Hz<br>Measurement ranges 0 60 m/s, -<br>40 + 70 °C<br>Accuracy (max. dev.)<br>wind speed<br>/ wind direction 0.1 m/s or 2 % /<br>2°@ 5 m/s<br>Resolution 0.01 m/s, 0.1°,0.01 K<br>Output data set x, y, z, T / vel, dir,<br>z, T<br>Averaging method scalar, vectorial<br>Output protocols standard,<br>checksum, NMEA<br>Data outputasync, polling, time<br>synchronized<br>Power supply 9 36 VDC / 3 W (5<br>W with options)<br>Serial interface<br>RS422, RS485 (300 115200),<br>ASCI |
| Gas analyser     | Li-Cor Li-7500RS | CO2 Measurements• Calibration range: 0 to 3000<br>µmol mol <sup>-1</sup> • Accuracy: Within 1% of reading• Zero drift (per °C):<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <ul> <li>RMS noise (typical @ 370 ppm<br/>CO<sub>2</sub> and 10 mmol mol<sup>-1</sup> H<sub>2</sub>O):</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------|
| ○ @5 Hz: 0.0034 mmol<br>mol <sup>-1</sup>                                                                         |
| <ul> <li>○ @10 Hz: 0.0047<br/>mmol mol<sup>-1</sup></li> <li>○ @20 Hz: 0.0067</li> </ul>                          |
| mmol mol⁻¹<br>■ Gain drift (% of reading per °C<br>@ 20 mmol mol⁻¹):                                              |
| ○         ±0.15% typical           ○         ±0.30% maximum                                                       |
| Direct sensitivity to CO <sub>2</sub> (mol<br>H <sub>2</sub> O/mol CO <sub>2</sub> ):     O = +0.02 typical       |
| ○ ±0.02 typical<br>○ ±0.05 maximum                                                                                |

| Flux        | 2m                 |                                                                                                           |
|-------------|--------------------|-----------------------------------------------------------------------------------------------------------|
| Tower 2a    |                    |                                                                                                           |
| logger      | Campbell           |                                                                                                           |
|             | Scientific         |                                                                                                           |
|             | CR3000             |                                                                                                           |
| 3 x soil    | Campbell           | Temperature measurement range: -55°C to +70°                                                              |
| temperature | Scientific         | Thermistor interchangeability error:* <±0.18°C over -25 to +50°C                                          |
| probes      | 107<br>Temperature | CPRosic instruction linearisation error: $\rightarrow 0.03^{\circ}$ C over $_{-55}$ to $\pm 70^{\circ}$ C |
|             |                    |                                                                                                           |
|             | Probe              | Bridge resistor errors: " <±0.13°C over -25 to +50°C (worst case) <±0.35°C over -55 to +70°C              |
| 3 x soil    | Campbell           | Range: 0 to -2 bars (0 to 200 kPa)                                                                        |
| moisture    | Scientific         | Length: 3.25 inches (8.26 cm)                                                                             |
| probes      | 253 soil           | Diameter: 0.75 inches (1.91 cm)                                                                           |
| -           | Moisture           | weight: 0.8 lbs (362.9 g)                                                                                 |
| 3 x self    | Comphall           | Sensor Type: Thermopile with film heater                                                                  |
| calibrating | Campben            | Sensitivity (nominal): 50 µV W-1 m-2                                                                      |
| soil heat   | Scientific         | Nominal Resistance: 2 $\Omega$                                                                            |
| flux plates | HFP01SC            | Temperature Range: -30° to +70°C                                                                          |
|             | 10                 | Expected Accuracy: ±3% of reading                                                                         |
|             | self-              | Heater Voltage Input: 9 to 15 Vdc                                                                         |
| calibrating |                    |                                                                                                           |
|             | soil heat flux     | Heater Voltage Output: 0 to 2 Vdc                                                                         |
|             | 1 /                | Duration of Calibration: ±3 minutes @ 1.5 W;                                                              |
|             | plates             | typically performed every 3 to 6 hours                                                                    |
|             |                    | Average Power Consumption: 0.02 to 0.04 W                                                                 |
|             |                    | Plate Diameter: 80 mm (3.15 in)                                                                           |
|             |                    | Weight without cable: 200 g (7.05 oz)                                                                     |
| GPS         | Garmin             | RMC                                                                                                       |
|             | GPS 18X            |                                                                                                           |
| 2 x SW      | Kipp &             | ISO 9060:1990 classification Secondary Standard                                                           |
|             | Zonen CMP          | Response time (95%) < 5 s<br>Zero off sets                                                                |
|             | 22                 | (a)< 3 W/m <sup>2</sup> (1)                                                                               |
|             |                    | (b)< 1 W/m <sup>2</sup>                                                                                   |
|             |                    | Non-linearity< 0.2%                                                                                       |
|             |                    | Directional response< 5 W/m <sup>2</sup> up to 80° zenith angle                                           |
|             |                    | Spectral selectivity< 2%                                                                                  |
|             |                    | Tilt response< 0.2%                                                                                       |

| 2 x LW Kipp &<br>Konen CGR<br>4 | Kinn &         | Specification                         | Unit             | Value                                         | Remark                                        |
|---------------------------------|----------------|---------------------------------------|------------------|-----------------------------------------------|-----------------------------------------------|
|                                 | Spectral range | μm                                    | 4.5 to 42        | 50% point                                     |                                               |
|                                 | Sensitivity    | µV/Wm <sup>-2</sup>                   | 5 to 10          |                                               |                                               |
|                                 | Impedance      | Ohm                                   | 40 to 200        |                                               |                                               |
|                                 |                |                                       | < 18             | 95% response                                  |                                               |
|                                 |                | Response time                         | s                | < 6                                           | 63% response                                  |
|                                 | Non-linearity  | %                                     | < 1              | from -250 to +250 W/m <sup>2</sup> irradiance |                                               |
|                                 |                | Temperature dependence of sensitivity | %                | < 5                                           | - 40 °C to -20°C                              |
|                                 |                |                                       |                  | < 1                                           | - 20 °C to +50 °C                             |
|                                 |                |                                       |                  | < 10                                          | +50 °C to +80 °C                              |
|                                 |                | Tilt error                            | %                | < 1                                           | deviation when facing downwards               |
|                                 |                | Window heating offset                 | W/m <sup>2</sup> | < 4                                           | 0 to 1000 W/m <sup>2</sup> / solar irradiance |
|                                 |                | Zero offset B                         | W/m²             | < 2                                           | at 5 K/h temp. change                         |
|                                 |                | Operating temperature:                | °C               | -40 to +80                                    |                                               |
|                                 |                | Field of view:                        |                  | 180°                                          |                                               |
|                                 |                | Directional error                     | W/m²             | Not defined                                   | Irrelevant to isotropic IR source             |
|                                 |                | Irradiance:                           | W/m <sup>2</sup> | -250 to +250                                  |                                               |
|                                 |                | Non-stability                         | %                | < 1                                           |                                               |
|                                 |                | Spectral selectivity                  | %                | < 5                                           | 8 – 14 µm spectral range                      |
|                                 |                | Environmental                         | 3                | humidity 0 - 100% RH                          |                                               |
|                                 |                | Uncertainty in hourly total           | %                | Not defined                                   | 95 % confidence level                         |
|                                 |                | Uncertainty in daily total            |                  | < 3                                           | 95 % confidence level                         |

| Flux Tower 2b    | 10 feet        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| logger           | Moxa IA 240    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GPS              | Garmin GPS 18X | RMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sonic anemometer | Metek usonic 3 | Ambient conditions-40 + 60 °C,<br>5 100%<br>Average time / number 1 3600<br>s/ 1 65365 samples<br>Sampling rate 0.1 30/50 Hz<br>Measurement ranges 0 60 m/s, -<br>40 + 70 °C<br>Accuracy (max. dev.)<br>wind speed<br>/ wind direction 0.1 m/s or 2 % /<br>2°@ 5 m/s<br>Resolution 0.01 m/s, 0.1°,0.01 K<br>Output data set x, y, z, T / vel, dir,<br>z, T<br>Averaging method scalar, vectorial<br>Output protocols standard,<br>checksum, NMEA<br>Data outputasync, polling, time<br>synchronized<br>Power supply 9 36 VDC / 3 W (5<br>W with options)<br>Serial interface<br>RS422, RS485 (300 115200),<br>ASCI                                            |
| Gas analyser     | LiCor 6750     | CO <sub>2</sub> Measurements<br>Calibration range: 0 to 3000<br>$\mu$ mol mol <sup>-1</sup><br>Accuracy: Within 1% of reading<br>Zero drift (per °C):<br>$\circ$ ±0.1 ppm typical<br>$\circ$ ±0.3 ppm maximum<br>RMS noise (typical @ 370 ppm<br>CO <sub>2</sub> and 10 mmol mol <sup>-1</sup> H <sub>2</sub> O):<br>$\circ$ @5 Hz: 0.08 ppm<br>$\circ$ @10 Hz: 0.11 ppm<br>$\circ$ @20 Hz: 0.16 ppm<br>Gain drift (% of reading per °C<br>@ 370 ppm):<br>$\circ$ ±0.02% typical<br>$\circ$ ±0.1% maximum<br>Direct sensitivity to H <sub>2</sub> O (mol<br>CO <sub>2</sub> /mol H <sub>2</sub> O):<br>$\circ$ ±2.00E-05 typical<br>$\circ$ ±4.00E-05 maximum |
|  | H-O Measurements                                                                                                                                                                                                                                                                                                  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |                                                                                                                                                                                                                                                                                                                   |
|  | <ul> <li>Calibration range: 0 to 60 mmol<br/>mol<sup>-1</sup></li> </ul>                                                                                                                                                                                                                                          |
|  | • Accuracy: Within 2% of reading                                                                                                                                                                                                                                                                                  |
|  | <ul> <li>Zero drift (per °C):         <ul> <li>±0.03 mmol mol<sup>-1</sup><br/>typical</li> <li>±0.05 mmol mol<sup>-1</sup><br/>maximum</li> </ul> </li> </ul>                                                                                                                                                    |
|  | <ul> <li>RMS noise (typical @ 370 ppm<br/>CO<sub>2</sub> and 10 mmol mol<sup>-1</sup> H<sub>2</sub>O):         <ul> <li>@5 Hz: 0.0034 mmol mol<sup>-1</sup></li> <li>@10 Hz: 0.0047 mmol mol<sup>-1</sup></li> <li>@20 Hz: 0.0067 mmol mol<sup>-1</sup></li> </ul> </li> </ul>                                    |
|  | <ul> <li>Gain drift (% of reading per °C<br/>@ 20 mmol mol<sup>-1</sup>):         <ul> <li>±0.15% typical</li> <li>±0.30% maximum</li> </ul> </li> <li>Direct sensitivity to CO<sub>2</sub> (mol H<sub>2</sub>O/mol CO<sub>2</sub>):         <ul> <li>±0.02 typical</li> <li>±0.05 maximum</li> </ul> </li> </ul> |
|  |                                                                                                                                                                                                                                                                                                                   |

| AWS    | 2m                |                                                                                                                                                                                                                                                                                                                                                               |
|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System | Davis Vantage Pro |                                                                                                                                                                                                                                                                                                                                                               |
| PPT    |                   | Sensor Type: Tipping bucket with<br>magnetic switch<br>Accuracy:.For rain rates up to 4"/hr<br>(100 mm/hr): ±4% of total or ± 1 tip of<br>the bucket (0.01"/0.2 mm), whichever<br>is greater<br>Rain Collector : 6.5" opening diameter<br>(16.5 cm) x 9.5" (24 cm) high without<br>bird spikes<br>Collection Area:33.2 in <sub>2</sub> (214 cm <sub>2</sub> ) |
| WS     |                   | Resolution and Units: Measured in 1<br>mph. Other units are converted from<br>mp<br>h and rounded to nearest 1 km/h, 0.1<br>m/s, or 1 knot<br>Range: 1 to 200 mph, 1 to 173 knots,<br>0.5 to 89 m/s, 1 to 322 km/h<br>Accuracy ±2 mph (2 kts, 3 km/h, 1<br>m/s) or ±5%, whichever is greater                                                                  |
| WD     |                   | Display Resolution: 16 points (22.5°)<br>on compass rose, 1° in numeric display<br>Accuracy:±3°                                                                                                                                                                                                                                                               |
| RH     |                   | Resolution and Units: 1%<br>Range:1 to 100% RH<br>Accuracy±3% (0 to 90% RH), ±4% (90<br>to 100% RH)<br>Temperature Coefficient 0.03% per °F<br>(0.05% per °C), reference 68°F (20°C)<br>Drift ±0.5% per year<br>Update Interval 50 seconds to 1 minute                                                                                                        |
| Т      |                   | Resolution and Units :1°F or 1°C<br>(user-selectable)<br>Range :-40° to +150°F (-40° to<br>+65° C)<br>Sensor Accuracy . $\pm$ 1°F ( $\pm$ 0.5°C)<br>under 110°F (43°C), $\pm$ 2°F ( $\pm$ 1°C)<br>over 110°F (43°C)<br>Update Interval:10 seconds<br>Data: Instant Reading                                                                                    |
| PP     |                   | Resolution and Units: 0.01" Hg, 0.1<br>mm Hg, 0.1 hPa/mb (user-selectable)<br>Range: 6.00" to 32.50" Hg, 410 to 820<br>mm Hg, 540 to<br>1100 hPa/mb                                                                                                                                                                                                           |

| Elevation Range -999' to +15,000' (-  |
|---------------------------------------|
| 600 m to 4570 m) (Note that co        |
| nsole screen limits entry of lower    |
| elevation to -999' when using feet as |
| elevation unit.)                      |
| Uncorrected Reading Accuracy: ±0.03"  |
| Hg (±0.8 mm Hg, ±1.0 hPa/mb) (at      |
| room temperature)                     |
| Sea-Level Reduction Equation Used:    |
| United States Method employed prior   |
| to use of current "R Factor" method   |
| Equation Source Smithsonian           |
| Meteorological Tables                 |
| Equation Accuracy ±0.01" Hg (±0.3     |
| mm Hg, ±0.3 hPa/mb)                   |
| Elevation Accuracy Required ±10' (3m) |
| to meet equation accuracy             |
| specification                         |
| Overall Accuracy ±0.03" Hg (±0.8 mm   |
| Hg, ±1.0 hPa/mb)                      |

## MRR

The MRR Micro Rain Radar is a compact 24 GHz FM-CW-radar for the measurement of profiles of drop size distributions and – derived from this – rain rates, liquid water content and characteristic falling velocity resolved into 30 range gates. Due to the high sensitivity and fine temporal resolution very small amounts of precipitation – below the threshold of conventional rain gauges – are detectable. Due to the large scattering volume (compared to in situ sensors) statistically stable drop size distributions can be derived within few seconds. The droplet number concentration in each drop-diameter bin is derived from the backscatter intensity in each corresponding frequency bin. In this procedure the relation between terminal falling velocity and drop size is exploited.

Automatically controlled antenna heating allows operation under icing conditions.

Typical applications include the unattended long-term measurement of rain, real time calibration of weather radar, and monitoring of the melting zone.

| Transmit Power                                                                  | 50 mW      |
|---------------------------------------------------------------------------------|------------|
| Frequency                                                                       | 24.23 GHz  |
| Beam Width                                                                      | 1.5°       |
| Averaging Interval                                                              | 10 - 3600s |
| Height Resolution                                                               | 10 - 200 m |
| Number of Range Gates                                                           | 30         |
| Detection threshold height 500 m, height resolution 100 m, time resolution 10 s | 1 mm / hr  |
| Antenna Heating                                                                 | 230 VAC    |
| Interface                                                                       | RS232,LAN  |
| Power                                                                           | 24VDC, 25W |
| Weight                                                                          | 6 kg       |

Manufacturer & Model: METEK MRR2 Micro Rain Radar

### SCANNING MICROWAVE RADIOMETER

The **HATPRO** instrument is a stand-alone system for automated weather-station use under nearly all environmental conditions. Full atmospheric profiles are derived, retrieved data as well as raw data are stored. A variety of retrieval algorithms (custom designed or global standard algorithms) can be selected.

The system is passive with two frequency reception bands: 22-31 GHz (7 channel filter bank humidity profiler and LWP radiometer) and 51-58 GHz (7 channel filter bank temperature profiler). A range of data are retrieved including:

- Vertical profiles of atmospheric temperature
- vertical profile of atmospheric humidity (relative and absolute humidity)
- Liquid Water path (LWP)
- Integrated Water Vapour (IWV)
- stability indices
- surface pressure, temperature, relative humidity and rain flag

The system is capable of standalone operation but the AMF supply a host PC to facilitate data archiving and custom setup of the instrument. The HATPRO GPS provide the measurement timing and also position. The environmental temperature range for operation:  $-60^{\circ}$ C to  $+45^{\circ}$ C and the automatic rain-mitigation system, consisting of a hydrophobic coating and strong blower, prevent rain settling on the radome. The 1.8kW heater module prevents formation of dew and fog condensation on radome. A new radome is fitted before any deployment and replaced, while on deployment, every 6 months or if compromised. (Mechanical damage, salt build up etc all result in the hydrophobic properties of the radome being compromised).

| Optical Resolution                         | 3.5° (2.5°) HPBW at 22 (51) GHz                                                                                                                                                                                                                                                     |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiometric resolution                     | 0.3 – 0.4 K RMS at 1.0 s integration time                                                                                                                                                                                                                                           |
| Absolute system stability                  | 1.0 K                                                                                                                                                                                                                                                                               |
| Receiver and antenna thermal stabilisation | < 0.02 K                                                                                                                                                                                                                                                                            |
| Repetition rate                            | filter bank receiver produces one atmospheric profile per second                                                                                                                                                                                                                    |
| Humidity profile performance               | Vertical resolution:<br>200 m (range 0-2000 m)<br>400 m (range 2000-5000 m)<br>800 m (range 5000-10000 m)<br>Accuracy:<br>0.4 g/m3 RMS (absolute hum.)<br>5% RMS (rel. humidity)                                                                                                    |
| Temperature profile performance            | Vertical resolution:<br>BL-Mode:<br>30 m -50 m (range 0-1200 m)<br>Z-Mode:<br>200 m (range 1200-5000 m)<br>400 m (range 5000-10000 m)<br>Accuracy:<br>0.25 K RMS (range 0-500 m)<br>0.50 K RMS (range 0-500 m)<br>0.75 K RMS (range 1200-4000 m)<br>1.00 K RMS (range 4000-10000 m) |
| LWP                                        | Accuracy: +/- 20 g/m2<br>Noise: 2 g/m2 RMS                                                                                                                                                                                                                                          |
| IWV                                        | Accuracy: +/-0.2 kg/m2 RMS<br>Noise: 0.05 kg/m2 RMS                                                                                                                                                                                                                                 |

Manufacturer & Model: RPG Radiometer Physics Gmbh HATPRO Radiometer

#### SODAR

The MFAS64 is a monostatic sodar and generates different beam angles during emission and reception by phased-delayed driving and sensing, respectively, of the rows or columns of an array of 64 acoustic transducers. The phase delays in the emission and reception modes are produced digitally, resulting in long term stability of the phase-shift and related performances. General advantages of the phase array systems over three-component horn antenna systems are a smaller antenna size and a more flexible use.

Height resolution is gathered by range gating, i.e. by considering the time the pulse needs to propagate from the antenna to the measured layer and back. From the amplitude of the backscatter wave, detailed information about the turbulent structure in the atmospheric boundary layer can be obtained. By evaluating the spectrum of the backscatter wave, the wind speed can be determined. This is possible because of the Doppler frequency shift resulting from the movement of the scattering temperature inhomogeneities with the mean wind. When at least three beams are emitted at different angles, a vertical profile of the three-dimensional wind vector can be derived.

The MFAS64 can operate in single or multi-frequency modes. In the single-frequency mode, a single pulse with a defined frequency is emitted and afterwards the backscattered is recorded and evaluated. This procedure is repeated in several directions. In multi-frequency mode, sequences composed of pulses with varying frequencies are emitted and the backscattered waves for all the frequencies are received simultaneously. Up to 10 different frequencies between 1650 and 2750 Hz can be defined. Multi-frequency operation significantly increases the signal-to-noise ratio since more acoustic power can be emitted into the atmosphere without increasing the pulse-length per frequency, i.e. without reducing the vertical resolution. As with the single-frequency mode, the pulse sequence is repeated in several directions.

The antenna can emit beams in up to 9 different directions:

| 0° Vertically |           |  |
|---------------|-----------|--|
| 29° East      | 22° West  |  |
| 29° North     | 22° South |  |
| 29° West      | 22° East  |  |
| 29° South     | 22° North |  |

Complementary pulse pairs with opposite directions (29°/-22°) can be emitted even within a single pulse sequence and the backscattered wave from these two directions received simultaneously. This results in a significant increase in the signal-to-noise ratio without sacrificing vertical resolution. Due to the MFAS64 phase generation technique the emission angles are independent of frequency.

The acoustic antenna can be operated in a shaded and non-shaded mode. In the non-shaded mode, the antenna directivity is highest. In the shaded mode the side lobes (emissions in other than the main direction) are smallest. Depending on the site and the application, one or the mode will provide better results.

Within a single emitted sequence, pulses of different frequency and direction can have different lengths. The shortest possible pulse length corresponds to a layer thickness of 10 m during data evaluation. Longer pulses are a multiple of this base length. It is often advantageous to have a long first pulse for better signal-to-noise at large altitudes. This in combination with height dependent vertical resolution can balance the requirements of maximum range and highest possible vertical resolution at lower altitudes. Height dependent resolution means that adjacent layers are binned together and the spectra averaged.

#### **MFAS64 Specifications:**

| Number of elements                | 64                                      |
|-----------------------------------|-----------------------------------------|
| Frequency range                   | 1650 - 2750 Hz                          |
| Acoustic output power             | 7.5 W                                   |
| Number of frequencies             | Up to 80, 10 within a single sequence   |
| Beam angles                       | 0°, ± 22°, ± 29°                        |
| Number of vertical layers         | 100                                     |
| Thickness of layer                | 10 - 250 m                              |
| Lowest measurement height         | 20 m                                    |
| Maximum range                     | 500 - 1000 m                            |
| Averaging time                    | 1 min to 60 min                         |
| Accuracy of Horizontal Wind speed | 0.1 - 0.3 m/s                           |
| Accuracy of vertical Wind speed   | 0.03 - 0.1 m/s                          |
| Accuracy of wind Direction        | 2 - 3°                                  |
| Measurement range horizontal      | - 50 m/s to +50 m/s                     |
| Measurement range vertical        | -10 m/s to +10 m/s                      |
| Operational temperature range     | -35 to 50 °C                            |
| Power requirements                | ±12 VDC, 200 W peak, 50 - 100 W average |
| Size                              | 72 cm x 74 cm x 25 cm                   |
| Weight                            | 32 kg                                   |

## Ceilometer

The CS135 LIDAR Ceilometer measures cloud height and vertical visibility for meteorological and aviation applications. Utilising LIDAR (LIght Detection And Ranging) technology, the instrument transmits fast, low-power laser pulses into the atmosphere and detects back-scattered returns from clouds and aerosols above the instrument.

The CS135 complies with CAA and ICAO guidance and meets or exceeds all recommendations and specifications (this includes CAP437, CAP670 and CAP746).

Tilt capability to 24° allows the sensor to be operated anywhere in the world without the sun shining directly into the lens.

The CS135 employs a novel split-lens design to increase optical signal-to-noise ratio over other instruments while maintaining Class 1M eye safety by integrating larger optics into a compact

package. This optical design provides an alternative to traditional bi-axial or common-optics designs. The optical isolation of traditional bi-axial systems is maintained to increase detector sensitivity, while the new low overlap onset height of common-optics systems is incorporated to allow measurements at close ranges.

This hybrid approach, along with state-of-the-art electronics, provides a powerful and stable platform from which to measure cloud height and vertical visibility to high accuracy. With a rugged environmental enclosure that protects the instrument from the harshest conditions, the CS135 measures the atmosphere with high stability and repeatability.

Instrument Performance:

- Reporting Range: 0-10 km / 32,800 ft
- Minimum Reporting Resolution: 5 m / 15 ft
- Hard Target Range Accuracy: +/- 0.25% +/- 4.6 m
- Reporting Cycle: 2 to 120s
- Cloud Layers Reported: Up to four layers reported
- Sky condition: Up to five layers with cover in oktas according to WMO requirements for SYNOP and METAR codes
- Vertical Visibility: Reported when no clouds selected
- Laser Wavelength: 905 nm
- Eye Safety: Class 1M

**Electrical Specification** 

- Power: 110/115/230 VAC ± 10%
- 50-60 Hz
- 470 W maximum
- Battery: Internal 12V 2Ah battery provides 1hr measurement without blower/heater, in the event of mains failure.

#### Interfaces:

- Data RS232 / RS485
- Maintenance USB 2.0 (USB 1.1 compatible)
- Baud Rate 300 115200

Laser safety compliance: EN60825-1:2001

Electrical safety compliance: EN61010-1

Mechanical Specification

- Dimensions (mm): 1000 x 330 x 316 including base
- Weight:
- 32 kg (total without cables)
- 25 kg (without outer cowling and enclosure)
- Shipping weight: 58 kg
- Shipping dimensions (mm): 1200 x 450 x 450
- Maximum Windspeed: 55 m/s (shown by static load testing and survival in field use)

**Environmental Specification** 

- Temperature Range (excluding battery): -40 60°C (-40 140°F)
- Battery Temperature Range: -20°C to +50°C. Alternative battery types with wide temperature ranges can be supplied.
- Humidity: 0 100% RH

• IP Rating: IP66 (NEMA 4x)

## **Sun Photometer**

The operated sun photometer is a Cimel CE 318 TP9. The photometer automatically follows sun or moon depending on the mode. Using irradiance measurements the aerosol optical thickness can be derived at certain wavelengths. Polarisation filters additionally provide information about type and shape of the aerosols.





| Specifications:                     |                              |
|-------------------------------------|------------------------------|
| Accuracy of irradiance measurement: | < 0.1 %                      |
| Field of sight:                     | 1.3°                         |
| Spectral range:                     | 340-1640 nm                  |
| Mechanical accuracy of position:    | 0.003°                       |
| Power consumption:                  | < 2 W                        |
| Total weight:                       | 25 kg                        |
| Modes:                              | Sun, sky, moon               |
| Operation range:                    | -30 – 70 °C (temperature)    |
|                                     | 0 – 100% (relative humidity) |

# Appendix C: Meta data of instruments at Ile-Ife

| Parameter(s)           | Device and<br>model                           | Manufacturer           | Accuracy                        | Number<br>available |
|------------------------|-----------------------------------------------|------------------------|---------------------------------|---------------------|
| Wind speed             | Cup anemometer<br>A101ML/A100L2               | Vector<br>Instruments  | distance const.<br>2.3 m        | 8                   |
| Wind direction         | Wind vane<br>W200P                            | Vector<br>Instruments  | Distance const.<br>2.3 m        | 2                   |
| Air<br>temperature/RH  | Temp & RH probe<br>HMP45C/60                  | Vaisala                | $\pm 0.1^{\circ}C$              | 6                   |
| Surface<br>temperature | Infrared<br>Pyranometer<br>KT1582D            | Heitronics             | ± 0.5°C                         | 1                   |
| Surface<br>temperature | Infrared<br>thermometer SI-<br>111 radiometer | Campbell<br>Scientific | $\pm 0.1^{\circ}C$              | 2                   |
| Soil temperature       | Thermistor T108L                              | Campbell<br>Scientific | $\pm 0.1^{\circ}C$              | 6                   |
| Soil temperature       | ΡΤ-100Ω                                       | Campbell<br>Scientific | $\pm 0.1^{\circ}C$              | 6                   |
| Soil temperature       | Thermocouple                                  | Campbell<br>Scientific | $\pm 0.1^{\circ}C$              | 1                   |
| Soil heat flux         | Heat flux plate<br>HP3/CN3                    | Middleton              | ~ 13.5 $\mu$ V/Wm <sup>-2</sup> | 1                   |
| Soil heat flux         | Heat flux plate<br>HFP01                      | Hukseflux              | $50 \mu\text{V/Wm}^{-2}$        | 4                   |
| Soil moisture          | Water content<br>Reflectometer CS<br>616      | Campbell<br>Scientific | $\pm$ 3% of water content       | 1                   |
| Rainfall amount        | Tipping bucket<br>TE525                       | Texas<br>Instruments   | 0.254 mm/TIP                    | 1                   |
| Global radiation       | Pyranometer CN1                               | Kipp & Zonen           | $23.94 \mu\text{V/Wm}^{-2}$     | 1                   |
| Global radiation       | Pyranometer<br>CS300L                         | Campbell<br>Scientific | $13 \mu\text{V/Wm}^{-2}$        | 3                   |

| Net radiation                                   | Net radiometer<br>(REBS) Q7      | Campbell<br>Scientific           | + 9.6 (-11.9)<br>μV/Wm <sup>-2</sup>                                                                                 | 1 |
|-------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|---|
| Net radiation                                   | Net radiometer<br>NR-LITE        | Kipp & Zonen                     | $13.9 \ \mu V/Wm^{-2}$                                                                                               | 2 |
| Net radiation<br>(components)                   | Net radiometer<br>NR01           | Hukseflux                        | 15.74 μV/Wm <sup>-2</sup> ,<br>15.60 μV/Wm <sup>-2</sup> ,<br>9.90 μV/Wm <sup>-2</sup> &<br>8.20 μV/Wm <sup>-2</sup> | 1 |
| Photosynthetically<br>Active Radiation<br>(PAR) | Li COR Quantum<br>Sensor LI190SB | Li COR                           | 5 $\mu$ A per 1000<br>$\mu$ moles s <sup>-1</sup> m <sup>-2</sup>                                                    | 2 |
| Wind                                            | SODAR PCS -<br>2000              | METEK                            | 0 – 5m/s (±<br>0.5m/s); 5 – 35<br>m/s (± 10%)                                                                        | 1 |
| Wind                                            | CSAT3, USA-1                     | Campbell<br>Scientific,<br>METEK | NA                                                                                                                   | 1 |
| CO <sub>2</sub> /H <sub>2</sub> O               | Li COR                           | Campbell<br>Scientific           | NA                                                                                                                   | 1 |
| Aerosol Optical<br>Depth (AOD)                  | Sun photometer<br>(Calitoo)      |                                  | NA                                                                                                                   | 1 |