

Module Handbook

Meteorology (MSc)

SPO 2015

Summer Semester 2019

as of 16 February 2019

KIT Department of Physics

KIT- The Research University in the Helmholtz Association

www.kit.edu

Publisher:

Department of Physics Institute of Meteorology and Climate Research Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe

www.imk-tro.kit.edu

Photographs:

Licensed by Shutterstock

Contact:

Katharina.maurer@kit.edu

Table of Contents

I Course Program	7
1. Introduction to the Study Guide	7
2. Qualification Goals	7
3. Course Program	8
Subjects	8
Course Program M.Sc. Meteorology (SPO 2015)	9
Atmospheric and Climate Processes	10
Applied and Experimental Meteorology	10
Compulsory Electives	10
Research Work: Specialization Phase	10
Master's Thesis	10
4. Excerpts from the Regulation for the Study and Examination	11
4.1. Regular Period of Study, Organization of Study, Credits (§3, SPO)	11
4.2. Module Examinations, Coursework and Assessments (§4, SPO)	11
4.3. Registration for and Admission to Module Examinations and Courses (§5, SPO)	12
4.4. Execution of Controls of Success (§6, SPO)	12
4.5. Controls of Success by a Multiple Choice Test (§6a, SPO)	14
4.6. Repetition of Examinations, Ultimate Failure (§8, SPO)	14
4.7. Loss of the Entitlement to an Examination (§9, SPO)	15
4.8. Deregistration, Absence, Withdrawal (§10, SPO)	15
4.9. Maternity Leave, Parental Leave, Assumption of Family Obligations (§12, SPO)	16
4.10. Students with a Disability or Chronic Disease (§13, SPO)	16
4.11. Master's Thesis (§14, SPO)	17
4.12. Additional Achievements (§15, SPO)	19
4.13. Transferable Skills (Soft Skills) (§15a, SPO)	19
4.14. Recognition of Coursework and Examinations as well as of Study Periods (§18, SPO)	19
4.15. Accomplishments obtained outside of the Higher Education System	20
5. Forthcoming Changes	20
II Modules	21
1. Components of the Climate System	21
2. Atmospheric Processes	23
3. Experimental Meteorology	25
4. Applied Meteorology	
5. Compulsory Electives	
5.1. Modern Theoretical Physics for Teacher Students	
5.2. Modern Theoretical Physics I, Quantum Mechanics I	

5.3. Physics of Planetary Atmospheres	31
5.4. Computer Vision and GIS	33
5.5. GIS und Fernerkundung	34
5.6. Computer Vision und Fernerkundung	35
5.7. GIS and Geo Data Infrastructures	37
5.8. Informatics for Meteorology Students	38
5.9. Geophysical Analysis of Natural Hazards	39
5.10. Geoecology	40
5.11. Basics of Estimation Theory and its Application in Geo science Remote Sensing	42
5.12. Geological Hazards and Risk	43
6. Research Work: Specialization Phase	44
7. Master's Thesis	45
III Courses	47
T-PHYS-101563 – Scientific Concept Development	47
T-PHYS-102317 – Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1	
T-PHYS-103203 – Moderne Theoretische Physik für Lehramt – Vorleistung	
T-PHYS-103525 - Geological Hazards and Risks	
T-PHYS-103553 – Einführung in die Vulkanologie	51
T-PHYS-107673 – Seminar über aktuelle Themen aus der Risikoforschung	52
T-PHYS-107692 – Seminar on IPCC Assessment Report	53
T-PHYS-107693 – Tropical Meteorology	54
T-PHYS-107694 – Cloud Physics	55
T-PHYS-107695 – Energetics	56
T-PHYS-107696 – Atmospheric Radiation	57
T-PHYS-108610 – Turbulent Diffusion	
T-PHYS-108928 – Climate Modeling & Dynamics with ICON	59
T-PHYS-108931 – Middle Atmosphere in the Climate System	60
T-PHYS-108932 – Ocean-Atmosphere Interactions	61
T-PHYS-108938 – Atmospheric Aerosols	63
T-PHYS-109133 – Remote Sensing of Atmospheric State Variables	64
T-PHYS-109135 – Advanced Practical Course	65
T-PHYS-109136 – Field Trip	66
T-PHYS-109139 – Advanced Numerical Weather Prediction	67
T-PHYS-109140 – Meteorological Hazards	68
T-PHYS-109141 – Energy Meteorology	69
T-PHYS-109142 – Methods of Data Analysis	
T-PHYS-109177 – Physics of Planetary Atmospheres, Prerequisite	
T-PHYS-109616 – Master's Thesis	
T-PHYS-109902 – Integrated Atmospheric Measurements	73
IV Guidelines to Master's Thesis	74
1. Finding a topic and supervisor	74

2. Registration and Deadlines	.74
3. The module Specialization Phase	.76
4. The module <i>Master's Thesis</i>	.76
Glossary	.78

I Course Program

1. Introduction to the Study Guide

This module handbook is the relevant document describing the structure and the contents of the Master's degree program in Meteorology, and thus provides helpful information and guidance for the studies. The degree program and its subjects and modules are described in detail, thus providing the necessary information for planning an interdisciplinary course of studies tailored to each student's personal interests and needs.

The first section Study Guide specifies the organization of the degree program and further formalities in addition to the general regulations for the Study and Examination.

A key function of the module handbook is the collection of module descriptions (Section 2) and course descriptions (Section3), which provide information on the requirements and recommendations.

In addition to this module handbook, the university calendar and possibly announcements of the institutes inform about further details, for example, on times and places of lectures and classes.

Please note, that only the German version of the Regulation for the Study and Examination ("Studien- und Prüfungsordnung", SPO) is legally binding. The translated version is for the purpose of information only.

2. Qualification Goals

The graduates of the Master's program in Meteorology know and understand the scientific fundamentals of meteorology and climatology, and have deepened them in the areas of the climate system, atmospheric processes as well as applied and experimental meteorology. This also includes aspects of atmospheric composition and thus of trace gases and aerosols. They have well-founded knowledge of programming techniques, numerical methods, computer simulations and data analysis, and have the ability to explain and at least partly apply complex atmospheric measurements in the laboratory, field and from satellite. They are familiar with mechanisms of the climate system and climate change. They know the relevance of meteorological phenomena such as extreme weather events, air pollution and climate change for society, nature and economy as well as for geoscientific neighboring disciplines, and can discuss and debate them. They also have detailed knowledge in a scientific elective.

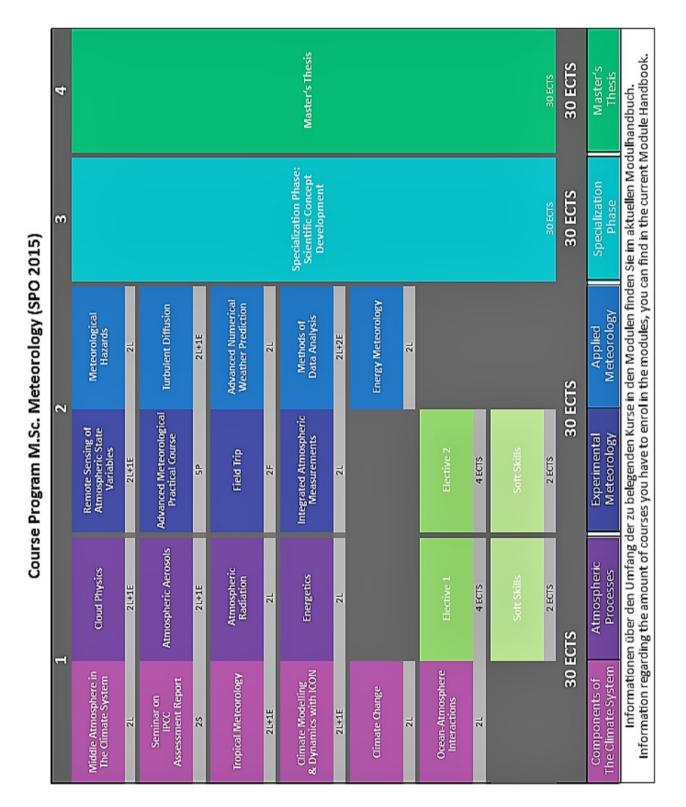
Based on the acquired knowledge, the graduates correctly classify facts and thematic areas, and have the ability to solve – or develop approaches to solve – complex problems of the atmospheric and environmental sciences in an analytical-theoretical, computer-based or experimental way. They have the ability to deduce relationships from measured or modeled data, to formulate models, to derive predictions and to concretely test them, and thus to verify or falsify them. In addition, they can apply meteorological knowledge to research-related questions and are able to solve technical problems using the methods of the subject, also employing computer programs.

The graduates furthermore have sound methodological skills with regard to clear presentation and structuring of scientific findings and research results in written and spoken texts, and are proficient in didactically appealing presentation techniques. They can work independently and have extensive communication and organizational skills, including sound knowledge of scientific English. They are able to acquire new knowledge and insights as needed and thus to achieve a broadening or deepening of their knowledge. They have learned to reflect on their actions, and to recognize and evaluate the social and ethical aspects of meteorological research and application.

The distinctiveness of the Master's program in Meteorology compared to other universities lies in the broad range of aspects of meteorology covered as well as the strong research relevance. A successful completion of the Master's program in Meteorology is an excellent foundation for a PhD in Meteorology or in related disciplines, and enables an applied or researching professional activity, i.a. in the field of weather forecasting, earth observation, satellite-based remote sensing and the compilation of environmental reports as well as in atmospheric research institutions and in the insurance and energy industries.

3. Course Program

The masters degree program in Meteorology deepens and extends the essential scientific qualifications obtained in the Bachelor's program in a research-oriented way. Consolidation occurs in the areas of Theoretical Meteorology and Numerical Weather Prediction, Climatology, Remote Sensing and Data Analysis as well as in Atmospheric Chemistry and Aerosols, while extensions take place in the area of Applied Meteorology. A comprehensive practical course familiarizes the graduates with methods of modern atmospheric measurements in the laboratory and field. With the completion of the Master's thesis, the graduates have demonstrated that they are capable of applying scientific knowledge and methods to independently solve complex research problems. In addition, they acquired detailed skills in an elective from a wide range of other natural sciences.


Subjects

The degree program in *Meteorology* comprises 120 credits corresponding to the European Credit Transfer System (ECTS) and is divided into the subjects

- Atmospheric and Climate Processes (24 ECTS)
- Applied and Experimental Meteorology (24 ECTS)
- Compulsory Electives (8 ECTS)
- Soft Skills (4 ECTS)
- Research Work: Specialization Phase (30 ECTS)
- Master's Thesis (30 ECTS)
- Additional Subjects (max. 30 ECTS)

For details, see graphic on following page.

Abbreviations: Lectures (L), Exercises (E), Seminar (S), Field Trip (F), Practical Course (P), Credits corresponding to the European Credit Transfer System (ECTS).

Course Program M.Sc. Meteorology (SPO 2015)

Atmospheric and Climate Processes

This is one of two core meteorological subjects comprising two large modules on Components of the Climate System (12 ECTS, see chapter 2.1.) and Atmospheric Processes (12 ECTS, see chapter 2.2.).

Applied and Experimental Meteorology

This is one of two core meteorological subjects comprising two large modules on *Experimental Meteorology* (14 ECTS, see chapter 2.3.) and *Applied Meteorology* (10 ECTS, see chapter 2.4.).

Compulsory Electives

The study can be complemented by electives to individualize the degree program. These could thus be modules from related disciplines such as Physics, Geoecology, Geophysics, Mechanical Engineering, or Applied Geosciences.

Examples of possible *Compulsory Elective Modules* from other disciplines are listed in <u>section II chapter 5</u>. All subject-specific modules, for which an examination has not already been taken, can be chosen.

Research Work: Specialization Phase

Students carry out an interdisciplinary <u>Study Project</u>, for which 30 ECTS are credited. The project prepares students for independent scientific working and writing, and introduces skills in project management. The *Study Project* focuses on the topic of the subsequent <u>Master's Thesis</u> and serves as a preparation for the scientific work. In addition to the competence in reading and understanding scientific literature, the students acquire abilities for independent work and critical evaluation of results in the context of the literature.

Master's Thesis

This module is intended to provide students with in-depth aspects of scholarly writing and presentation. Building on the results from the Specialization Phase, students further advance their own research project to finally write a Master's Thesis. The written scientific work includes a summary of the state of the literature, presentation of the goals, methods used and the results obtained as well as a discussion of the knowledge gained and the remaining open questions.

More information about the modules *Specialization Phase* and *Master's Thesis* is provided in the Guidelines to Master's Thesis in <u>section 4</u>.

4. Excerpts from the Regulation for the Study and Examination

4.1. Regular Period of Study, Organization of Study, Credits (§3, SPO)

(1) The regular period of study shall be four semesters.

(2) The curriculum of the program is divided into subjects, the subjects into modules, and the modules are divided into courses. The subjects and their scopes are defined in Article 19. Details are outlined in the module manual.

(3) The workload envisaged for passing courses and modules is expressed in credits. The criteria for assigning credits correspond to the European Credit Transfer System (ECTS). One credit corresponds to a workload of about 30 hours. Usually, the credits shall be distributed equally over the semesters.

(4) The coursework and examinations required for the successful completion of the study are measured in credits and amount to a total of 120 credits.

(5) Upon prior announcement, the courses may also be offered in English.

4.2. Module Examinations, Coursework and Assessments (§4, SPO)

(1) The master's examination shall consist of module examinations. Module examinations shall consist of one or several controls of success ("Erfolgskontrollen"). Controls of success shall consist of coursework ("Studienleistungen") and assessments ("Prüfungsleistungen").

(2) Assessments are:

- Written examinations,
- oral examinations, or
- examinations of another type.

(3) Coursework shall be written, oral, or practical work that is usually accomplished by students simultaneously to the taught courses. The master's examination must not be completed by a coursework.

(4) At least 70% of the module examinations shall be graded.

(5) In case of complementary contents, module examinations of several modules may be combined (par. 2, nos. 1-3).

4.3. Registration for and Admission to Module Examinations and Courses (§5, SPO)

(1) To participate in module examinations, students shall register online on the Students Portal for the corresponding controls of success. In exceptional cases, registration can be made in writing to the Students Office or another institution authorized by the latter. For controls of success, registration deadlines may be specified by the examiners. Registration of the master's thesis is outlined in the module manual.

To get help with the Campus System visit <u>https://www.sle.kit.edu/imstudium/videotutorials-campus.php</u> (currently available only in German language) or ask the *student counseling* via <u>Mail</u>.

(2) For admission to an examination in an elective module, students shall submit – together with their registration for the examination – a binding declaration relating to their choice of the module and its assignment to a subject prior to the first examination in this module. At the request of the student to the examination committee, the choice or assignment can be changed later. If an examination procedure in a module has already started, the choice of elective or assignment to a subject can only be changed after its completion.

(3) Admission to a control of success shall be granted to students, who

- are enrolled in the Master's Program in Meteorology at KIT; with the admission of students on leave being limited to examinations, and to students, who
- can prove that they meet the requirements for admission to a control of success outlined in the module manual and
- can prove that their entitlement to an examination in the Master's Program in Meteorology has not been lost.

(4) According to Article 30, par. 5, LHG (Landeshochschulgesetz), admission to individual mandatory courses may be restricted. The examiner shall decide on the selection of students, who have registered in due time before the deadline given by the examiner, taking into account the study progress made by these students and taking into consideration Article 13, par. 1, clauses 1 and 2, if the surplus of registrations cannot be reduced by other or additional courses. In the case of identical study progress, further criteria shall be specified by the KIT departments. The result shall be announced to the students in due time.

(5) Admission shall be refused, if the conditions outlined in pars. 3 and 4 are not fulfilled. Admission may be refused, if a control of success that was required for admission to this Master's Program was already passed in a KIT bachelor's program. This shall not apply to premature master's examinations ("Mastervorzug"). Admission to these shall be approved explicitly according to clause 1.

4.4. Execution of Controls of Success (§6, SPO)

(1) Controls of success shall be performed simultaneously to the taught courses, usually while conveying the contents of the individual modules or shortly afterwards.

(2) The type of control of success (Article 4, par. 2, nos. 1 - 3, par. 3) shall be specified by the examiner of the respective course depending on the contents of the course and teaching objectives of the module. The

type of controls of success, their frequency, sequence, weighting, and the determination of the module grade, if applicable, shall be announced in the module manual six weeks prior to the start of the lecturing period at the latest. The examiner and student may change the type of examination and the examination language later on. In the former case, Article 4, par. 4 has to be observed. When organizing examinations, the needs of students with a disability or chronic disease shall be considered according to Article 13, par. 1. Article 13, par. 1, clauses 3 and 4 shall apply accordingly.

(3) In case of an unreasonably high examination workload, a written examination may also be passed orally or an oral examination may also be passed in writing. This modification shall be announced six weeks prior to the examination at the latest.

(4) In case of courses in the English language (Article 3, par. 5), the corresponding controls of success can be executed in this language. Article 6, par. 2 shall apply accordingly.

(5) Written examinations (Article 4, par. 2, no. 1) shall usually be evaluated by an examiner according to Article 17, pars. 2-4. If an evaluation is made by several examiners, the grade shall be the arithmetic mean of the individual evaluations. If the arithmetic mean does not correspond to any of the grade levels defined in Article 7, par. 2, cl. 2, the grade shall be rounded to the next higher or lower grade level. In case of equal distance to the next higher and lower levels, the grade shall be rounded to the next higher grade level. The evaluation procedure shall not exceed six weeks. Written examinations shall last at least 60 and not more than 300 minutes.

(6) Oral examinations (Article 4, par. 2, no. 2) shall be performed and evaluated as group or individual examinations by several examiners (examining board) or by one examiner in the presence of an assessor. Prior to determining the grade, the examiner shall consult the other examiners of the examining board. Oral examinations shall usually last at least 15 minutes and not more than 60 minutes per student.

Major details and results of the *oral examination* shall be minuted. The result of the examination shall be announced to the student directly after the oral examination.

Students who intend to take the same examination in a later semester shall be admitted to oral examinations as an observer depending on the space available and upon approval of the examinee. They shall not be admitted to the consultation of the examining board and the announcement of the examination results.

(7) For examinations of another type, (Article 4, par. 2, no. 3), appropriate deadlines and submission dates shall be specified. Proper description of the task and adequate documentation shall ensure that the examination passed can be credited to the student. Major details and results of the control of success shall be minuted.

During *oral examinations of another type*, an assessor shall be present in addition to the examiner, who shall also sign the minutes together with the examiner.

Theses or papers to be written for *an examination of another type* shall be provided with the following declaration:

"Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde."

"I herewith declare that the present thesis/paper is original work written by me alone and that I have indicated completely and precisely all aids used as well as all citations, whether changed or unchanged, of other theses and publications."

If the thesis/paper does not contain this declaration, it shall not be accepted. Major details and results of such a control of success shall be minuted.

4.5. Controls of Success by a Multiple Choice Test (§6a, SPO)

It is outlined in the module manual whether and to what extent controls of success can be made by a multiple choice test.

4.6. Repetition of Examinations, Ultimate Failure (§8, SPO)

(1) Students may repeat once a written examination that has not been passed (Article 4, par. 2, no. 1). In case a repeated written examination is given the grade of "nicht ausreichend" (5.0, failed), an oral reexamination shall take place soon after the date of the failed examination. In this case, the grade of this examination may not be better than "ausreichend" (4.0, sufficient).

(2) Students may repeat once an oral examination that has not been passed (Article 4, par. 2, no. 2).

(3) Repeated examinations according to paragraphs 1 and 2 shall correspond to the first examination in terms of contents, scope, and type (oral or written). At request, exceptions may be approved by the responsible examination committee.

(4) Examinations of another type (Article 4, par. 2, no. 3) can be repeated once.

(5) Coursework can be repeated several times.

(6) An examination shall ultimately not be passed, if the oral reexamination according to par. 1 was evaluated with the grade of "nicht ausreichend" (5.0, failed). The examination also shall ultimately not be passed, if the oral examination according to par. 2 or the examination of another type according to par. 4 was evaluated twice with the grade of "nicht bestanden" (failed).

(7) The module shall ultimately not be passed, if an examination required for passing the module is ultimately not passed.

(8) A second repetition of the same examination according to Article 4, par. 2 shall be possible in exceptional cases at the request of the student only ("Antrag auf Zweitwiederholung" – application for a second repetition). As a rule, the application shall be submitted in writing to the examination committee within two months after announcement of the grade.

The examination committee shall decide on the first application of a student for a second repetition. If the examination committee dismisses the application, a member of the Presidential Committee shall decide. Upon comment of the examination committee, a member of the Presidential Committee shall decide on further applications for a second repetition. If the application is accepted, the second repetition shall take place on the next but one examination date at the latest. Paragraph 1, clauses 2 and 3 shall apply accordingly.

(9) Repetition of a passed examination shall not be permitted.

(10) In case a Master's thesis has been granted the grade "nicht ausreichend" (5.0, failed), it can be repeated once. A second repetition of the Master's thesis shall be excluded.

4.7. Loss of the Entitlement to an Examination (§9, SPO)

In case coursework or an examination required according to the present Regulations for Study and Examination is ultimately not passed or the master's examination, including potential repetitions, is not passed completely by the end of the examination period of the seventh semester, the entitlement to examination in the Master's Program in Meteorology shall expire, unless the student is not responsible for having exceeded the deadline. The decision on extending the deadline and on exceptions from the deadline regulations shall be made by the examination committee taking into account the activities listed in Article 32, par. 6, LHG at the request of the student. This request shall be made in writing usually six weeks prior to the expiry of the deadline.

4.8. Deregistration, Absence, Withdrawal (§10, SPO)

(1) Students can revoke their registration for written examinations until the issue of the examination tasks without having to indicate any reasons (deregistration). Deregistration can be made online on the Students Portal by 12 pm on the day before the examination or in justified exceptional cases with the Students Office during office hours. If the deregistration is addressed to the examiner, the latter shall ensure that the deregistration is documented in the Campus Management System.

(2) In case of oral examinations, deregistration shall be declared to the examiner at least three working days before the date of examination. Withdrawal from an oral examination less than three working days before the date of examination shall be possible under the conditions outlined in par. 5 only. In principle, withdrawal from oral reexaminations in the sense of Article 9, par. 1 shall be possible under the conditions of par. 5 only.

(3) Withdrawal from examinations of another type and from coursework shall be subject to the provisions given in the module manual.

(4) An examination shall be deemed to have been "nicht ausreichend" (5.0, failed), if the student fails to be present at the examination without a good reason or if she/he withdraws from the examination after its start without a good reason. The same shall apply, if the master's thesis is not submitted within the period envisaged, unless the student is not responsible for having exceeded the deadline.

15

(5) The reason given for withdrawal after the start of the examination or absence shall be notified immediately, credibly, and in writing to the examination committee. In case of sickness of the student or of a child cared for by the student alone or of a relative in need of care, submission of a medical certificate may be required.

4.9. Maternity Leave, Parental Leave, Assumption of Family Obligations (§12, SPO)

(1) At the student's request, the maternity protection periods as defined by the Act on the Protection of the Working Mother (Mutterschutzgesetz, MuSchG), as amended, shall be considered. The required evidence shall be enclosed with this request. The maternity protection periods suspend any deadline according to the present examination regulations. The duration of maternity protection shall not be included in the deadline given.

(2) At request, the deadlines of parental leave shall be considered according to the valid legislation (Bundeselterngeld- und Elternzeitgesetz (Parental Benefit and Parental Leave Act – BEEG)). Four weeks prior to the desired start of the parental leave period at the latest, the student shall inform the examination committee in writing about the time when she/he wishes to be on parental leave. The required evidence shall be enclosed. The examination committee shall then check whether the legal prerequisites would justify an employee's claim for parental leave and inform the student immediately of the result and the new times of examination. The period of work on the Master's thesis may not be interrupted by parental leave. In this case, the thesis shall be deemed to have not been assigned. After expiry of the parental leave period, the student shall receive a new subject that is to be dealt with within the period defined in Article 14.

(3) At request, the examination committee shall decide on the flexible handling of examination deadlines according to the provisions of the Act of Baden-Württemberg on Universities and Colleges (LHG), if students have to assume family obligations. Paragraph 2, clauses 4 to 6 shall apply accordingly.

4.10. Students with a Disability or Chronic Disease (§13, SPO)

(1) When organizing degree programs and examinations, the needs of students with a disability or chronic disease shall be considered. In particular, students with a disability or chronic disease shall be granted preferred access to courses with a limited number of participants and the order for passing certain courses shall be adapted to their needs. According to the Federal Equality Act (Bundesgleichstellungsgesetz, BGG) and Vol. 9 of the Social Code (SGB IX), students are disabled, if their bodily function, mental capacity, or emotional health most probably deviates from the state typical of the age for a period longer than six months and, hence, their participation in social life is impaired. At the request of the student, the examination committee shall decide on the existence of conditions outlined in clauses 2 and 3. The student shall submit the required evidence for this purpose.

(2) If a student provides evidence of a disability or chronic disease, as a result of which she/he is not able to pass examinations completely or partly within the planned time or in the form envisaged, the examination committee may permit examinations within other time periods or in another form. In particular, disabled students shall be permitted to use the required aids.

(3) In case students provide evidence of a disability or chronic disease, as a result of which they are not able to attend courses regularly or to pass the required coursework or examinations as outlined in Article 19, the examination committee may permit at the student's request passing of certain coursework and examinations after the expiry of the deadlines given in the present Regulations for Study and Examination.

(4) Examples of possible compensations of disadvantages:

- Modified form of exams, for instance oral exams instead of written exams, and vice versa
- Conducting exams in a separate room
- Allowing necessary utilities and assistance, e.g. sign language interpreter
- Additional breaks during time-limited exams
- Extension of the periods between exams

4.11. Master's Thesis (§14, SPO)

The <u>Master's Thesis</u> is an independent scientific study and includes the theoretical and/or experimental work on a complex problem. Students deal with the current state of research and apply the expertise and scientific methods acquired during the studies. They can document, discuss and evaluate the obtained results. Furthermore, they can present and defend the essential findings. The topic of the *Master's Thesis* depends on the subject area chosen for the thesis.

(1) For admission to the master's thesis module, module examinations worth 70 credits must have been passed successfully. In particular, module examination in the subject of "Wissenschaftliches Arbeiten" (Scientific Work) must have been passed successfully. At the request of the student, the examination committee shall decide on exceptions.

(1a) 30 credits are assigned to the master's thesis module. It consists of the master's thesis and a presentation. The presentation shall be given four weeks after submission of the master's thesis at the latest.

(2) The master's thesis topic can only be given out by university teachers ("Hochschullehrer(in)"), habilitated scientists, and leading scientists ("leitende(r) Wissenschaftler(in)") according to Article 14, par. 3, clause 1, KITG. In addition, the examination committee can authorize other examiners to give out the topic according to Article 17, pars. 2-4. The student shall be given the possibility of making proposals for the topic. If the master's thesis is to be written outside of the KIT Department of Physics, the approval of the examination committee shall be required. The master's thesis may also be accepted in the form of group work, if the contribution of the individual student to be evaluated in the examination can be distinguished clearly based on objective criteria and if the requirement outlined in par. 4 is fulfilled. In exceptional cases, the chairperson of the examination committee shall take care of the student receiving a topic for the master's thesis within four weeks after her/his request. In this case, the topic is issued by the chairperson of the examination committee.

(3) The subject, task, and scope of the master's thesis shall be limited by the supervisor such that it can be handled with the workload outlined in par. 4.

(4) The master's thesis shall demonstrate that the student is able to deal with a problem of her/his subject area in an independent manner and within a limited period of time using scientific methods. The scope of the master's thesis shall correspond to 30 credits. The maximum duration of work on the thesis shall amount to six months. The subject and task shall be adapted to the scope envisaged. The examination committee shall specify in which languages the master's thesis can be written. At the request of the student, the examiner can permit the master's thesis to be written in a language other than German.

(5) When submitting the master's thesis, the student shall assure in writing that the thesis is original work by her/him alone and that she/he has used no sources and aids other than indicated, marked all citations in word and content, and observed the Rules of KIT for Safeguarding Good Scientific Practice, as amended. If this declaration is not contained, the thesis will not be accepted.

The wording of the declaration may be:

"Ich versichere wahrheitsgemäß, die Arbeit selbständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben."

"I herewith declare that the present thesis is original work written by me alone and that I have indicated completely and precisely all aids used as well as all citations, whether changed or unchanged, of other theses and publications, and that I have observed the Rules of KIT for Safeguarding Good Scientific Practice, as amended."

If the declaration is not true, the master's thesis shall be evaluated "nicht ausreichend" (5.0, failed).

(6) The time of giving out of the topic of the master's thesis shall be recorded in the files of the examination committee by the supervisor and the student. The time of submission of the master's thesis shall be recorded in the files of the examination committee by the examiner. The student shall be allowed to return the topic of the master's thesis once only within the first month of the period of work on the thesis. At the justified request of the student, the examination committee may extend the time of work on the thesis given in par. 4 by three months at the maximum. If the master's thesis is not submitted in time, it shall be deemed to have been "nicht ausreichend" (failed, 5.0), unless the student is not responsible for this failure.

(7) The master's thesis shall be evaluated at least by one university teacher ("Hochschullehrer(in)") or leading scientist ("leitende(r) Wissenschaftler(in)") according to Article 14, par. 3, clause 1, KITG and another examiner. Usually, one of the examiners is the person who gave out the thesis topic according to par. 2. In case of deviating evaluations of both persons, the examination committee shall fix the grade of the master's thesis within the limits of the evaluations of both persons. It may also appoint another expert. The evaluation period shall not exceed eight weeks after submission of the master's thesis.

4.12. Additional Achievements (§15, SPO)

(1) Up to 30 further credits may be acquired in courses offered by KIT (additional achievements, "Zusatzleistungen"). Articles 3 and 4 of the examination regulations shall remain unaffected. These additional achievements shall not be considered when calculating the final and module grades. The credits not considered when determining the module grade shall be listed as additional achievements in the transcript of records. At the student's request, additional achievements shall be indicated in the master's certificate and marked as additional achievements. Additional achievements shall be listed with the grades outlined in Article 7.

(2) The student shall declare a module examination an additional achievement when registering for this examination. At the student's request, allocation of the module can be changed later on.

4.13. Transferable Skills (Soft Skills) (§15a, SPO)

Apart from scientific qualifications, KIT attaches high importance to transferable skills. These skills of 4 credits shall be part of the Master's Program in Meteorology. Transferable skills may be achieved additively or integratively.

A wide range of interdisciplinary qualifications is offered by

- the House of Competence (HOC)
- the Sprachenzentrum (language centre)
- the Centre for Cultural and General Studies (ZAK)

4.14. Recognition of Coursework and Examinations as well as of Study Periods (§18, SPO)

(1) Coursework and examinations completed, as well as study periods passed, in study programs at state or state-recognized universities and universities of cooperative education of the Federal Republic of Germany or at foreign state or state-recognized universities shall be recognized at the request of the student, if the competencies acquired do not differ considerably from the achievements or degrees to be replaced. For this, no schematic comparison, but an overall analysis shall be made. As regards the scope of a coursework to be recognized, the principles of the ECTS shall be applied.

(2) The student shall submit the documents required for recognition. Students newly enrolled in the Master's Program in Meteorology shall submit the application together with the documents required for recognition within one semester after enrollment. If documents are not available in the German or English language, an officially certified translation may be required. The examination committee shall bear the burden of proving that the application does not meet the recognition requirements.

(3) If achievements from outside of the KIT are recognized, they are listed as "anerkannt" (recognized) in the certificate. If grades exist, they shall be taken as is in case of comparable grade scales and shall be included in the calculation of module grades and the final grade. In case of incomparable grade systems, the grades can be converted. In the absence of grades, the note "bestanden" (passed) shall be entered.

(4) When recognizing coursework and examinations passed outside of the Federal Republic of Germany, the equivalence agreements adopted by the Conference of Ministers of Education and the German Rectors' Conference as well as agreements concluded within the framework of university partnerships shall be considered.

(5) Knowledge and skills acquired outside of the university system shall be recognized, if they are equivalent to the coursework and examinations to be replaced in terms of contents and level and if the institution, where the knowledge and skills were acquired, has a standardized quality assurance system. Recognition may be refused in parts when more than 50% of the university's study program is to be replaced.

(6) The examination committee (§16, SPO) shall be responsible for recognition. To determine whether a considerable difference in the sense of par. 1 exists, the responsible subject representatives shall be heard. Depending on the type and scope of coursework and examinations to be recognized, the examination committee shall decide on admission to a higher semester.

4.15. Accomplishments obtained outside of the Higher Education System

Accomplishments made outside of the higher education system, as for example vocational training, can be accredited if the acquired competences contribute to the qualification goals of the Master's program. Recognition is requested with the respective form of the examination committee.

The examination committee verifies to which extent the acquired knowledge and capabilities can be recognized, and which parts of the program they can replace. At maximum, 50 % of the university education can be replaced. The form for recognition must be submitted to the study advisor, who will transfer it to the examination committee and the "Studierendenservice".

5. Forthcoming Changes

- The course Meteorological Hazards will not be offered in the summer term 2019.
- The courses Radar Meteorology and Laser Remote Sensing will be replaced by the lecture Integrated Atmospheric Measurements.

II Modules

1. Components of the Climate System **Module Code** M-PHYS-100951 Responsible Lecturer Prof. Dr. Andreas Fink Level 4 Components of the T-PHYS-107692 Seminar on IPCC Assessment Report module: T-PHYS-107693 Tropical Meteorology Compulsory Electives T-PHYS-108928 Climate Modeling & Dynamics with ICON T-PHYS-108931 Middle Atmosphere in the Climate System T-PHYS-108932 Ocean-Atmosphere Interactions **ECTS Credits** 12 Study Program MSc Meteorology, compulsory module in the subject Atmospheric and Climate Processes Instruction Language English Duration 1 semester Module Frequency Each winter semester **Module Content** This module aims to give students an overview of important components of the climate system, their physical and chemical backgrounds and their temporal and spatial changes. This includes lectures, course work, computer and modelling classes on individual components of the climate system (e.g. tropics, polar regions, ocean, middle atmosphere) and on climate dynamics and change. Workload Presence time in lectures, exercises: 120 hours Preparation / follow-up: 120 hours Exam preparation: 120 hours **Controls of Success** Prerequisite: Course- For type of Coursework see Course description ("Teilleistungsbeschreibung") work \rightarrow successful completion of the prerequisites entitles to exam ("Studienleistung") Examination: T-PHYS-109138 Components of the Climate System (Module Exam) Assessment Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Mete-("Prüfungsleistung") orology

Special Features of the Exam	None
Grade	Grade of the oral exam
Exam Requirements	In the module <i>Components of the climate system</i> courses (C) are offered with lectures (L) and exercises (2L1E) and lectures without exercises (2L). Registration for this examination is only possible if courseworks have been made in a sufficient amount. There are different ways to do this:
	- 3C with 2L1E
	- 2C with 2L1E and 2C with 2L
	- 1C with 2L1E and 4C with 2L
Recommendations	Basic knowledge about the climate system is helpful.
Conditions	None
Learning Outcomes	The students can explain essential components of the climate system and their physi- cal properties. They are capable of explaining causes of climate change expertly to present and critically discuss. Students can designate monitoring systems for climate monitoring and how they work of climate models. The students can designate essen- tial processes in the atmosphere and ocean and explain with physical and chemical laws. They are able to analyze and interpret climate and weather data on the basis of diagnostic methods. In addition, they can expertly present and discuss learned or self-developed scientific findings.

22

2. Atmospheric Processes

Module Code	M-PHYS-100952
Responsible Lecturer	Prof. Dr. Corinna Hoose
Level	4
Components of the	T-PHYS-107694 Cloud Physics
module:	T-PHYS-107695 Energetics
	T-PHYS-108938 Atmospheric Aerosols
	T-PHYS-107696 Atmospheric Radiation
ECTS Credits	12
Study Program	MSc Meteorology, compulsory module in the subject Atmospheric and Climate Processes
Instruction Language	English
Duration	1 semester
Module Frequency	Each winter semester
Module Contents	This module aims to give students an overview of important physical and chemical processes in the atmosphere.
	This includes lectures and course work on cloud physics, radiation, aerosols, and en- ergetics of the atmosphere.
	For more information concerning details of the courses, please consult the course descriptions ("Teilleistungsbeschreibungen").
Workload	Presence time in lectures, exercises: 113 hours
	Preparation / follow-up: 87 hours
	Exam preparation: 160 hours
Controls of Success	
Prerequisite:	For type of Coursework see Course description ("Teilleistungsbeschreibung")
Coursework ("Studienleistung")	ightarrow successful completion of the prerequisites entitles to exam
Examination:	T-PHYS-108939 Atmospheric Processes (Module Exam)
Assessment ("Prüfungsleistung")	Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Mete- orology
Special Features of the Exam	None
Grade	Grade of the oral exam
Exam Requirements	All Courses must be passed.

Recommendations	None
Conditions	None
Learning	The students
Outcomes	ing physical a and dynamics in clouds or o dents are cap phere and de atmosphere, variables. The
	aerosols in th

The students can name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, they are capable of explaining structure and dynamics of different cloud systems and estimating the micro physical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and describe the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere on the basis of the atmospheric physico-chemical processes and transformations. The students are able to understand the chemical and physical causes of stratospheric ozone hole and its future development, know the main aerosol-cloud processes and are familiar with the *Köhler theory* and the classical nucleation theory.

3. Experimental Meteorology

Module Code	M-PHYS-100953
Responsible Lecturer	Prof. Dr. Christoph Kottmeier
Level	4
Components of the	T-PHYS-109133 Remote Sensing of Atmospheric State Variables
module:	T-PHYS-109902 Integrated Atmospheric Measurements
	T-PHYS-109135 Advanced Practical Course
	T-PHYS-109136 Field Trip
ECTS Credits	14
Study Program	MSc Meteorology, compulsory module in the subject <i>Experimental and Applied Meteorology</i>
Instruction Language	English
Duration	1 semester
Module Frequency	Each summer semester
Module Contents	This module is intended to provide students with an overview of modern mea- surement methods in meteorology and practical aspects of application. In particu- lar, this includes:
	 remote sensing (physical basics, radiation transfer, inverse methods, ba- sics of satellite remote sensing, techniques and applications),
	 radar techniques (scattering and absorption of electromagnetic waves, radar equation, radar reflectivity factor and rain rate, technical aspects, radar beams in a stratified medium, wind information from Doppler radar data) and laser processes (properties and propagation of light, basics of the laser, functional principles of laser remote sensing, technical structure of lidar systems, overview of common lidar measuring methods, space- based lidar systems) as integrated atmospheric measurements.
	• In addition, the module provides the students with an insight into and practical experience with modern measuring methods, such as those used in research at KIT and other institutions, on the basis of the internship and the excursion.
Workload	Presence time in lectures, exercises: 57 hours
	Attendance time in excursion and practicals 100 hours
	Preparation / follow-up: 143 hours
	Exam preparation: 120 hours
Controls of Success	

Prerequisite: Coursework ("Studienleistung")	For type of Coursework see Course description (Teilleistungsbeschreibung) \rightarrow successful completion of the prerequisites entitles to exam
Examination:	T-PHYS-109137 Experimental Meteorology (Module Exam)
Assessment ("Prüfungsleistung")	Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Me- teorology
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	All Courses must be passed.
Recommendations	None
Conditions	None
Learning Outcomes	The students can explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students are able to build and execute experiments in the lab or in the field according to instructions, to record and evaluate data scientifically founded and then interpret and present the results.

4. Applied Meteorology

Module Code	M-PHYS-100954
Responsible Lecturer	Prof. Dr. Joaquim Pinto
Level	4
Components of the	T-PHYS-109142 Methods of Data Analysis
module:	T-PHYS-109139 Advanced Numerical Weather Prediction
	T-PHYS-109140 Meteorological Hazards
	T-PHYS-109141 Energy Meteorology
	T-PHYS-108610 Turbulent Diffusion
ECTS Credits	10
Study Program	MSc Meteorology, compulsory module in the subject <i>Experimental and Applied</i> Meteorology
Instruction Language	English
Duration	1 semester
Module Frequency	Each summer semester
Module Contents	This module aims to give students an overview of important applications of
	meteorology in areas such as weather forecasting and warning, insurance and en- ergy industry, air quality and data analysis. In particular, the module deals with the following aspects:
	• Methods of data analysis that are widely used in the Geosciences and particularly in meteorology / climate research are presented (e.g., statistical methods, correlation analyzes, least-squares (linear, multi-linear, and nonlinear regression), principal component analysis, Fourier analysis)
	 Methods of numerical weather prediction (hydrodynamic equation sys- tems, spectral approximation methods, differential approximation on ir- regular lattices, statistical data assimilation methods, operational aspects of weather forecasting)
	• Meteorological natural hazards (extreme events, extra tropical and tropical cyclones, convection, thunderstorms, super cells, tornadoes, convective storm gusts, derechos, hail, climate change and extreme events)
	• Energy meteorology (fundamentals of the energy system, application of meteorological expertise in the energy industry, in particular for the integration of renewable energies wind power, solar energy and hydro power, deepening of individual meteorological aspects of particular relevance)
	• Dispersion of atmospheric constituents (relevant trace gases, diurnal cy- cles of emissions and concentrations, temperature and flow evolution in

Workload Controls of Success Prerequisite:	the lower atmosphere, turbulent diffusion , turbulence parameterization, chemical conversion processes, numerical models) Presence time in lectures, exercises: 90 hours Preparation / follow-up: 90 hours Exam preparation: 120 hours For type of Coursework see Course description (Teilleistungsbeschreibung)
Coursework ("Studienleistung")	\rightarrow successful completion of the prerequisites entitles to exam
Examination:	T-PHYS-109143 Applied Meteorology (Module Exam)
Assessment ("Prüfungsleistung")	Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Me- teorology
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	In the module <i>Applied Meteorology</i> courses (C) are offered with lectures (L) and exercises (2L1E) and lectures without exercises (2L). Registration for this examination is only possible if courseworks have been made in a sufficient amount. There are different ways to do this: Methods of Data Analysis &
	• 1C with 2L1E and 1C with 2L, or
	• 3C with 2L
Recommendations	Basic knowledge in statistics is helpful.
Conditions	None
Learning Outcomes	The students can professionally explain essential aspects of application aspects of meteorology and assign them to specific application areas. They are capable to describe the functionality of a modern weather forecasting system in detail and are able to predict potential for extreme events and their impact on the population and the insurance industry depending on the region and the season. The students are capable to derive the Impact on air pollution and generating regenerative energy from weather information. They are capable of analyzing meteorological data using statistical and computer-based methods.

5. Compulsory Electives

5.1. Moder	rn Theoretical Physics for Teacher Students
Module Code	M-PHYS-101664
Responsible Lecturer	Dr. Stefan Giesecke
Level	4
Components of the	<u> T-PHYS-103203 – Moderne Theoretische Physik für Lehramt – Vorleistung</u>
module	<u> T-PHYS-103204 – Moderne Theoretische Physik für Lehramt – Prüfung</u>
ECTS Credits	Prerequisite: 0
	Exam: 8
Study Program	Physics LA Bachelor
Instruction Language	German
Duration	1 semester
Module Frequency	Each winter semester
Module Contents	Electrostatics: basic equations, scalar potential, examples.
	 Magneto statics: basic equations, vector potential, examples.
	 Special relativity theory, relativistic formulation of electrodynam- ics.
	• Time-dependent fields and radiation phenomena: basic equa- tions, Poynting theorem.
	 Electromagnetic waves: plane waves, polarization, wave packets, spherical waves, electromagnetic potentials and gauge transfor- mations, Hertzian dipole.
	 Basic equations of quantum mechanics. Uncertainty principle. In- terpretation of the wave function. A particle in one dimension. Multi-particle states, Pauli principle. Energy eigenstates of the hy- drogen atom. Atomic structure and periodic table of the elements in the model of hydrogen-like atoms.
Workload	Presence time in lectures 90 hours
	Preparation / follow-up, exercises, Exam preparation: 150 hours
Controls of Success	
Prerequisite:	optional variants of pre-calculation, exercise sheets, written exam
Coursework ("Studienleistung")	ightarrow successful completion of the prerequisite entitles to exam
Examination:	T-PHYS-103204 – Moderne Theoretische Physik für Lehramt – Prüfung

Assessment ("Prüfungsleistung")	Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Mas- ter's Meteorology
Special Features of the Exam	None
Grade	Grade of the oral exam
Requirements	Modules Classical Theoretical Physics I and II
Recommendations	Basic knowledge in statistics are helpful.
Conditions	None
Learning Outcomes	Know the basics of the theory of electric and magnetic fields and the elec- trical and magnetic properties of matter. Fundamentals of quantum me- chanics with simple applications.

5.2. Modern Theoretical Physics I, Quantum Mechanics I

Module Code	M-PHYS-101707
Responsible Lecturer	Prof. Dr. Frans Klinkhamer (ITP)
Level	4
Components of the module	<u>T-PHYS-102317 – Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1</u>
	<u>T-PHYS-105134 – Moderne Theoretische Physik I, Quantenmechanik 1, Prüfung</u>
ECTS Credits	Prerequisite: 4
	Exam: 4
Study Program	MSc Meteorology
Instruction Language	German
Duration	1 semester
Module Frequency	Each summer semester
Module Content	Introduction: Historical Remarks, Limitations of Classical Physics
	 Dualism particle and wave: wave mechanics, matter waves, wave packets, uncertainty principle, Schrödinger equation, qualitative understanding of simple cases.
	 Mathematical tools: Hilbert space, Bra and Ket, operators, her- miticity, unitarity, eigenvectors and eigenvalues, observable, basis, completeness.
	Postulates of quantum mechanics: measurement process, time

evolution, time evolution of expectation values, Ehrenfest theo-

	rem and classical borderline case.
	One-dimensional potentials: Potential wells, harmonic oscillator.
	 Bound states in a three-dimensional potential: separation of vari- ables, central potential, angular momentum, rotational symmetry and spin, degeneracy, particles in the external electromagnetic field, hydrogen atom.
	 Time-independent perturbation theory: Neat and degenerate case, fine structure of the hydrogen spectrum, Stark effect.
	 Basics of Scattering Theory: Differential cross section, Born series and Born approximation, partial waves and scattering phases, op- tical theorem.
Workload	Presence time in lectures 90 hours
	Preparation / follow-up, exercises, Exam preparation: 150 hours
Controls of Success	
Prerequisite:	successful completion of the exercises
Coursework ("Studienleistung")	ightarrow successful completion of the prerequisite entitles to exam
Examination: Assessment	T-PHYS-105134 – Moderne Theoretische Physik I, Quantenmechanik 1, Prüfung
Examination: Assessment ("Prüfungsleistung")	
Assessment	Prüfung Oral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Mas-
Assessment ("Prüfungsleistung") Special Features of the	Prüfung Oral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Mas- ter's Meteorology
Assessment ("Prüfungsleistung") Special Features of the Exam	Prüfung Oral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Mas- ter's Meteorology None
Assessment ("Prüfungsleistung") Special Features of the Exam Grade	PrüfungOral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Master's MeteorologyNoneGrade of the oral exam
Assessment ("Prüfungsleistung") Special Features of the Exam Grade Requirements	Prüfung Oral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Master's Meteorology None Grade of the oral exam None
Assessment ("Prüfungsleistung") Special Features of the Exam Grade Requirements Recommendations	Prüfung Oral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Master's Meteorology None Grade of the oral exam None None
Assessment ("Prüfungsleistung") Special Features of the Exam Grade Requirements Recommendations Conditions Learning Outcomes	Prüfung Oral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Master's Meteorology None Grade of the oral exam None None None The student learns the basic concepts of single-particle quantum mechanics and applies them to important questions. He / she lays the foundation
Assessment ("Prüfungsleistung") Special Features of the Exam Grade Requirements Recommendations Conditions Learning Outcomes	PrüfungOral exam (approx. 30-60 min.) in accordance with § 4 (2) No. 2 SPO Master's MeteorologyNoneGrade of the oral examNoneNoneNoneNoneNoneNonenoneNonenoneNoneNoneNonenoneNonenoneNone </td

module code	
Responsible Lecturer	Prof. Dr. Thomas Leisner (IMK)
Level	4
Components of the module	<u>T-PHYS-109177 – Physics of Planetary Atmospheres, Prerequisite</u>

	<u> T-PHYS-109180 – Exam on Physics of Planetary Atmospheres</u>
ECTS Credits	Prerequisite: 8
	Exam: 2
Study Program	MSc Meteorology, Compulsory Elective
	MSc Physics, Minor Subjects
	MSc Physics, Supplementary Module
Instruction Language	English
Duration	1 semester
Module Frequency	Each winter semester
Module Content	The module gives a broad introduction into the formation and properties of planets and their atmospheres and tries to constrain possible planetary atmospheres by applying fundamental principles of physics. In this respect, the module will focus on the planetary atmospheres in our solar system. Moreover, recently developed methods for the remote sensing of extra solar planets are introduced and the current understanding of their atmospheres is presented. A focus is the energy budget of planetary atmospheres, where clouds play a central role. Their formation and growth will be covered in a generalized fashion.
Workload	Presence time in lectures, exercises: 45 hours
	Preparation / follow-up: 120 hours
	Exam preparation: 75 hours
Controls of success	
Prerequisite:	At least 50% of the points in the exercise
Coursework ("Studienleistung")	ightarrow successful completion of the prerequisite entitles to exam
Examination:	T-PHYS-109180 – Exam on Physics of Planetary Atmospheres
Assessment ("Prüfungsleistung")	Oral exam (approx. 45 min.) in accordance with § 4 (2) No. 2 SPO Master's Meteorology
Special Features of the Exam	None
Grade	Grade of oral exam
Requirements	None
Recommendations	Basic knowledge in Physics, Physical Chemistry and Fluid Dynamics at BSc level
Conditions	None
Learning Outcomes	

54	Computer Vision and GIS
5.4.	compater vision and dis

Module Code	M-BGU-102757
Responsible Lecturer	Prof. Dr. Stefan Hinz (IPF)
Level	4
Components of the module	T-BGU-103541 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung
	T-BGU-101681 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
	T-BGU-101732 – Image Processing and Computer Vision
	For more information regarding the Courses please see the module hand- book of the <u>Department of Civil Engineering</u> , <u>Geo and Environmental Sci-</u> <u>ence (BGU)</u>
ECTS Credits	9
Study Program	
Instruction Language	German
Duration	1 semester
Module Frequency	Each winter semester
Module Content	
Workload	
Controls of success	
Prerequisite: Coursework	Online test 'Introduction to GIS for Students of Natural, Engineering and Geo Sciences' (T-BGU-103541)
("Studienleistung")	ightarrow successful completion of the prerequisite entitles to exam
Examination: Assessment	T-BGU-101681 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
("Prüfungsleistung")	Written exam (90min) in accordance with § 4 (2) SPO Master's Meteoro- logy
Special Features on the Exam	None
Grade	Grade of written exam
Requirements	None
Recommendations	
Learning Outcomes	

5.5. GIS und Fernerkundung

Module Code	M-BGU-102758
Responsible Lecturer	Prof. Dr. Stefan Hinz (IPF)
Level4	4
Components of the module	T-BGU-103541 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung
	T-BGU-101681 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
	T-BGU-105725 – Einführung in Klassifizierungsverfahren der Fernerkun- dung
	For more information regarding the Courses please see the module hand- book of the <u>Department of Civil Engineering</u> , <u>Geo and Environmental Sci- ence (BGU)</u>
ECTS Credits	9
Study Program	
Instruction Language	German
Duration	1 semester
Module Frequency	Each winter semester
Module Content	
Workload	
Controls of success	
Prerequisite: Coursework	Online test 'Introduction to GIS for Students of Natural, Engineering and Geo Sciences' (T-BGU-103541)
("Studienleistung")	ightarrow successful completion of the test entitles to exam
Examination: Assessment	T-BGU-101681 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
("Prüfungsleistung")	Written exam (90min) in accordance with § 4 (2) SPO Master's Meteoro- logy
Special Features on the Exam	None
Grade	Grade of written exam
Requirements	None
Recommendations	

Learning Outcomes

-

5.6. Comp	uter Vision und Fernerkundung
Module Code	M-BGU-102759
Responsible Lecturer	Dr. Jan Cermak (ASF), Dr. Uwe Weidner (IPF)
Level	4
Components of the module	T-BGU-105725 – Einführung in Klassifizierungsverfahren der Fern- 4 ECTS erkundung
	Compulsory Elective Subject:
	T-BGU-101732 – Image Processing and Computer Vision 4 ECTS
	T-BGU-106333 – Remote Sensing of a Changing Climate, Vorleis- 4 ECTS tung
	T-BGU-106334 – Remote Sensing of a Changing Climate, Prüfung 4 ECTS
	T-PHYS-108283 T-PHYS-108286- Platzhalter MA MET Computer Vi- 4 ECTS sion und Fernerkundung für Meteorologen
	For more information regarding the Courses please see the mod- ule handbook of the <u>Department of Civil Engineering</u> , <u>Geo and En-</u> <u>vironmental Science (BGU)</u>
ECTS Credits	8
Study Program	
Instruction Language	German/English
Duration	2 semesters
Module Frequency	Each semester
Module Content	
Workload	
Controls of success	
Prerequisite: Coursework	For type of Coursework see Course description in the Module Handbook of BGU ("Teilleistungsbeschreibung")
("Studienleistung")	ightarrow successful completion of the test entitles to exam
Examination:	T-BGU-106334 – Remote Sensing of a Changing Climate, Prüfung
Assessment	The success check is carried out as a written exam (90min)
("Prüfungsleistung")	in accordance with § 4 (2) SPO Master's Meteorology
Special Features on the	2

GradeGrade of written examRequirementsNoneRecommendationsNoneConditionsLearning Outcomes

5.7. GIS and Geo Data Infrastructures

Module Code	M-BGU-102760
Responsible Lecturer	Prof. Dr. Stefan Hinz (IPF)
Level	4
Components of the module	1) T-BGU-103541 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung
	T-BGU-101681 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
	2) T-BGU-101757 – Geodateninfrastrukturen und Web-Dienste, Vorleis- tung
	T-BGU-101756 – Geodateninfrastrukturen und Web-Dienste
	For more information regarding the Courses please see the module hand- book of the <u>Department of Civil Engineering</u> , <u>Geo and Environmental Sci-</u> <u>ence (BGU)</u>
ECTS Credits	1) 6
	2) 4
Study Program	
Instruction Language	Deutsch
Duration	1 semester
Module Frequency	Each summer semester
Module Content	
Workload	
Controls of success	
Prerequisite: Coursework ("Studienleistung")	1) Online test 'Introduction to GIS for Students of Natural, Engineering and Geo Sciences' (T-BGU-103541)
	2) 'Geo data Infrastructures and Web-Services, Prerequisite' (T-BGU-101757) has to be passed to entitle to exam (T-BGU-101756)
	ightarrow successful completion of the prerequisites entitles to exam
Examination: Assessment	1) T-BGU-101681 – Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
("Prüfungsleistung")	Written exam (90min) in accordance with § 4 (2) SPO Master's Meteoro- logy
	2) T-BGU-101756 – Geodateninfrastrukturen und Web-Dienste

Oral exam (20min) in accordance with § 4 (2) SPO Master's Meteorology
None
The grade results from the weighted average of both examinations
None
None

Learning Outcomes

5.8. Informatics for Meteorology Students

Module Code	M-INFO-102980	
Responsible Lecturer	Bernhard Beckert (ITI)	
Level	4	
Components of the	Compulsory Elective Subject:	
module	T-INFO-101345 – Parallelrechner und Parallelprogrammierung	4 ECTS
	T-INFO-101298 – Verteiltes Rechnen	4 ECTS
	T-INFO-102061 – Mobile Computing und Internet der Dinge	4 ECTS
	T-INFO-101305 – Analysetechniken für große Datenbestände	4 ECTS
	T-INFO-101497 – Datenbanksysteme	4 ECTS
	T-INFO-101275 – Visualisierung	4 ECTS
	T-PHYS-108279 – T-PHYS-108282 Platzhalter MA MET INF für Stud. benotet oder unbenotet	4 ECTS
	For more information regarding the Courses please see the mod- ule handbook of the <u>Department of Informatics (INFO)</u>	
ECTS Credits	8	
Study Program		
Instruction Language	German	
Duration	1 or 2 semesters	
Module Frequency	Summer or winter semester	
Module Content		
Workload		
Controls of success		
Prerequisite:	The prerequisites depend on the selected course ("Teilleistung"). F	or more

Coursework ("Studienleistung")	information consult the course description in the Module Handbook of INFO ("Teilleistungsbeschreibung") \rightarrow successful completion of the prerequisites entitles to exam
Examination:	The exam depends on the selected course ("Teilleistung")
Assessment ("Prüfungsleistung")	
Special Features of the Exam	None
Module Content	
Grade	Grade of examination
Requirements	The module: Introduction to Computer Networks
Recommendations	Knowledge of basics from the course computer structures
Learning Outcomes	

5.9. Geophysical Analysis of Natural Hazards

M-PHYS-103336
Dr. Ellen Gottschämmer (GPI)
4
<u> T-PHYS-103553 – Einführung in die Vulkanologie, Vorleistung</u>
<u> T-PHYS-103644 – Einführung in die Vulkanologie, Prüfung</u>
T-PHYS-107673 – Seminar on recent topics of risk science
8
English
2 semesters
Each summer semester
For type of Coursework see Course description ("Teilleistungsbeschrei- bung")
ightarrow successful completion of the prerequisites entitles to exam
T-PHYS-103644 – Einführung in die Vulkanologie, Prüfung
Exam of another type in accordance with § 4 (2) SPO Master's Meteoro-

("Prüfungsleistung")	logy
Special Features of the Exam	None
Grade	Grade of examination of other type
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	

5.10. Geoecology

Module Code	M-PHYS-103398
Responsible Lecturer	Prof. Dr. Wolfgang Wilcke (IFGG)
Level	4
Components of the	T-BGU-107486 – Field Course Soil Science
module	T-BGU–107487 – Geomorphologie und Bodenkunde
	For more information regarding the Courses please see the module hand- book of the <u>Department of Civil Engineering</u> , <u>Geo and Environmental Sci- ence (BGU)</u>
ECTS Credits	8
Study Program	
Instruction Language	German
Duration	1 semester
Module Frequency	Each summer semester
Module Contents	
Workload	
Controls of success	
Prerequisite: Coursework	For type of Coursework see Course description in the Module Handbook of BGU ("Teilleistungsbeschreibung")
("Studienleistung")	ightarrow successful completion of the prerequisites entitles to exam
Examination:	T-BGU–107487 – Geomorphologie und Bodenkunde
Assessment ("Prüfungsleistung")	Written examination in accordance with § 4 (2) SPO Master's Meteorology
Special Features of the	None

Exam	
Grade	Grade of written examination
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	

5.11. Basics of Estimation Theory and its Application in Geo science Remote

Sensing

Module Code	M-BGU-103422
Responsible Lecturer	Prof. Dr. Jan Cermak (IMK-ASF)
	Prof. Dr. Stefan Hinz (IPF)
Level	4
Components of the	T-BGU-106821 – Grundlagen der Schätztheorie, Coursework
module	T-BGU-106633 – Data Analysis in Geo science Remote Sensing Projects, Coursework
	T-BGU – 106822 – Grundlagen der Schätztheorie und ihrer Anwendung in geowissenschaftlicher Fernerkundung, Oral Exam
	For more information regarding the Courses please see the module hand- book of the <u>Department of Civil Engineering</u> , <u>Geo and Environmental Sci- ence (BGU)</u>
ECTS Credits	8
Study Program	
Instruction Language	German
Duration	1 semester
Module Frequency	Each summer semester
Module Contents	
Workload	
Controls of success	
Prerequisite: Coursework	For type of Coursework see Course description in the Module Handbook of BGU (Teilleistungsbeschreibung)
("Studienleistung")	ightarrow successful completion of the prerequisites entitles to exam
Examination: Assessment	T-BGU – 106822 – Grundlagen der Schätztheorie und ihrer Anwendung in geowissenschaftlicher Fernerkundung, Oral Exam
("Prüfungsleistung")	Oral examination n accordance with § 4 (2) SPO Master's Meteorology
Special Features of the	
Exam	
Grade	Grade of oral examination
Requirements	None
Recommendations	
Conditions	

Learning Outcomes

5.12. Geolo g	gical Hazards and Risk
Module Code	M-PHYS-101833
Responsible Lecturer	Dr. Ellen Gottschämmer (GPI)
Level	4
Components of the module	T-PHYS-103525 - Geological Hazards and Risks
ECTS Credits	8
Study Program	
Instruction Language	English
Duration	1 semester
Module Frequency	irregular
Module Content	See course description ("Teilleistungsbeschreibung")
Workload	
Controls of success	
Prerequisite: Coursework ("Studienleistung")	None
Examination:	Examination of another type in accordance with §4(2) SPO Master's Mete-
Assessment ("Prüfungsleistung")	orology
Special Features of the Exam	None
Grade	Grade of examination of other type: To be evaluated: Exercise sheets, written project work.
Requirements	None
Recommendations	None
Conditions	None
Learning Outcomes	The students understand basic concepts of hazards and risk. They can ex- plain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. The have fundamental knowledge of risk reduction and risk management. They know methods of risk modeling and are able to apply them.

6. Research Work: Specialization Phase

Module Code	
	M-PHYS-100955
Responsible Lecturer	Prof. Dr. Peter Knippertz
Level	5
-	<u>T-PHYS-101563 – Scientific Concept Development</u>
ECTS Credits	30
Study Program	MSc Meteorology
Language	English or German. On agreement with the examiner(s), the <i>Study Project</i> can also be written in other languages.
Duration	1 semester
Module Frequency	Each semester
Module Content	Conducting a meteorological, interdisciplinary project work. This may be of a theoretical and/or experimental type. The focus is on the de- velopment of conclusions using scientific methods, project manage- ment and presentation of the results.
	Students are invited to make suggestions for topics.
	It is possible to conduct the project in cooperation with external part- ners.
Workload	6 months (900 h)
Controls of success	
Module examination: Coursework ("Studienleis-	Examination of other type in accordance to §4(2) No. 3 SPO Master's Meteorology:
tung")	Final presentation (20-25 minutes) in the <i>Seminar on Specialization</i> <i>Phase,</i> followed by a short discussion with the audience (15 minutes). Afterwards a short feedback meeting with the examiners and the supervisor about the progress and next steps will take place.
	Please notice that the seminar only takes place within the semester on Wednesday (15:45 – 17:15 pm) in Bldg. 30.23, Room 13-2. To get a seminar slot, please contact Kathi Maurer (student advisor) via <u>E-Mail</u> .
Special Features of the Exam	None
Grade	Ungraded
Requirements	Students need to have successfully completed all four module exams in the subjects Atmospheric and Climate Processes and Applied and Experimental Meteorology.
	experimental meteorology.

Recommendations	None
Conditions	None
Learning Outcomes	Students are able to work on a meteorological or interdisciplinary re- search project using scientific methods.
	They can, with guidance, plan, structure, prepare, conduct, and docu- ment a study. They can select appropriate methods for the solution of the given problem.
	Students are able to work self-organized and structured. They possess skills in the field of project management and presentation, both orally and in writing.

7. Master's Thesis

Module Code	M-PHYS-100956
Responsible Lecturer	Prof. Dr. Peter Knippertz
Level	5
Components of the module	T-PHYS-109616 Master's Thesis
ECTS Credits	30
Study Program	MSc Meteorology
Language	English or German. On agreement with the examiner(s), the <i>Study Project</i> can also be written in other languages.
Duration	1 semester
Module Frequency	Each semester
Content	After choosing a subject area and topic at the beginning of the module <i>Specialization Phase</i> and preparing their thesis, the students start their original scientific study. The Master's Thesis includes the theoretica and/or the experimental work on a complex problem using scientific methods.
	It is possible to conduct the project in cooperation with external part ners, for example an external research institution or an institution from the professional background.
Workload	6 months (900 h) (SPO§14 Abs. 1a)
Controls of success	
Module examination:	Written report (Master's thesis) and presentation (SPO §14 (1a)) in ac
Assessment ("Prüfungsleistung")	cordance with § 14 SPO Master's Meteorology evaluated by at least one professor, one habilitated scientist of the KIT-Faculty of Physics or one leading scientist in accordance with § 14 Abs. 3 para. 1 KITG and one other examiner. The overall assessment will be recorded in a written re

	port.
	The evaluation period shall not exceed eight weeks upon submission of the Master's thesis.
Special Features of the Exam	None
Grade	The overall grade results from the evaluations of the thesis and the final presentation.
Requirements	Students have successfully completed modules with a minimum of 70 ECTS credits, especially the module <i>Specialization Phase</i> must be successfully completed (SPO §14 (1)).
Recommendations	Attendance of the Karlsruhe Meteorological Colloquium and the depart- mental seminars (IMK-TRO, IMK-ASF, IMK-AAF).
Conditions	None
Learning Outcomes	Students can independently develop and carry out a scientific work. To this end, they deal with the latest state of research and apply the knowl- edge and the methods acquired during studies. They can discuss and evaluate the obtained results and present them in writing as well as de- fend the work in a presentation.
	The students are able to work on a coherent problem from their field of study independently and in a limited time according to scientific meth- ods and then present the knowledge gained in a written paper and in a presentation in an understandable and precise manner and to discuss it competently.

III Courses

T-PHYS-101563 – Scientific Concept Development		
Course Code	T-PHYS-101563 – Scientific Concept Development	
Responsible Lecturer	Prof. Dr. Peter Knippertz	
Part of	M-PHYS-100955 Research Work: Specialization Phase	
ECTS Credits	30	
Workload	6 months (900 h)	
Language	English or German. On agreement with the examiner(s), the <i>Study Project</i> can also be written in other languages.	
Duration	1 semester	
Course Frequency	Each semester	
Type of examination	Exam: Assessment ("Prüfungsleistung")	

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 19	4052904	Seminar on Specialization Phase	Seminar (S)	2	Chr. Kottmeier, C. Hoose, P. Knip- pertz, J. Pinto, A. H. Fink, M. Kunz, J. Orphal, T. Leis- ner, P. Braesicke

Controls of Success	Final presentation (20-25 minutes) in the <i>Seminar on Specialization Phase,</i> followed by a short discussion with the audience (15 minutes). Afterwards a short feedback meeting with the examiners and the supervisor about the progress and next steps will take place.
	Please notice that the seminar only takes place within the semester on Wednesday (15:45 – 17:15 pm) in Bldg. 30.23, Room 13-2. To get a seminar slot, please contact Kathi Maurer (student advisor) via <u>Mail</u> .
Requirements	Students have successfully completed all four module exams in the sub- jects Atmospheric and Climate Processes and Applied and Experimental Meteorology. Soft skills and Supplementary Modules can be incomplete.
Course Contents	See module description

Course Code	T-PHYS-102317 – Prerequisite
	T-PHYS-105134 – Exam
Responsible Lecturer	Prof. Dr. Ulrich Nierste
Part of	M-PHYS-101707Modern Theoretical Physics I, Quantum Mechanics I
ECTS Credits	Prerequisite: 4
	Exam: 4
Workload	
Language	German
Course Frequency	Each summer semester
Duration	1 semester
Type of examination	Prerequisite: Coursework ("Studienleistung")
	Exam: Assessment ("Prüfungsleistung")

T-PHYS-102317 – Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 19	4010141	Moderne Theoretische Physik I L (Theorie D, Quantenmechanik I)	.ectures(V)	4	U. Nierste
SS 19	4010142	Übungen zu Moderne Theoretis- E che Physik I	Exercises (Ü)	2	U. Nierste, I. Nisandzic

Controls of	f Success	Exercise sheets
Requireme	ents	None
Course	See module description	
Contents	ents	

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4012131	Moderne Theoretische Physik für Lehramtskandidaten	Lectures(V)	4	S. Gieseke
WS 18/19	4012132	Übungen zu Moderne Theoretis- che Physik für Lehramtskandi- daten	Exercises (Ü)	4	S. Gieseke

T-PHYS-103203 – Moderne Theoretische Physik für Lehramt – Vorleistung

Controls of Success	Exercise sheets
Requirements	
Course	
Contents	

T-PHYS-103525 - Geological Hazards and Risks

Course Code	T-PHYS-103525
Responsible Lecturer	Dr. Ellen Gottschämmer
Part of	M-PHYS-101833 Geological Hazards and Risks
ECTS Credits	8
Workload	240 h
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 19	4060121	Geological Hazards and Risks	Lecture (V)	2	E. Gottschämmer, J Daniell
SS 19	4060122	Exercises on Geological Hazard and Risks	s Exercises (Ü)	2	E. Gottschämmer, J. Daniell

Controls of Success	Exercise sheets, written project work.
Requirements	None
Course •	Earthquake Hazards
Contents	• Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
	• Induced seismicity
	 ○ Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration → hazard maps
	• Earthquake statistics
	• Liquefaction
•	Tsunami Hazards
•	Landslide Hazards
•	Hazards from Sinkholes
•	Volcanic Hazards
	 Short introduction to physical volcanology
	• Types of volcanic hazards
•	The Concept of Risk, Damage and Loss
•	Data Analysis and the use of GIS in Risk analysis

- Risk Modeling Scenario Analysis
- Risk Reduction and Risk Management •
- Analysis Feedback and Prospects in the Risk Modeling Industry •

T-PHYS-103553 – Einführung in die Vulkanologie

Course Code	T-PHYS-103553 – Prerequisite
	T-PHYS-103644 – Exam
Responsible Lecturer	Dr. Ellen Gottschämmer
Part of	M-PHYS-103336 Geophysical Analysis of Natural Hazards
ECTS Credits	Prerequisite: 3
	Exam: 1
Workload	Prerequisite: 120 h
	Exam: 30h
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	sws	Lecturer
SS 19	4060251	Introduction to Volcanology	Lecture (V)	2	E. Gottschämmer, A. Riedbrock
SS 19	4060252	Exercises to Introduction to Vol canology	- Exercises (Ü)		E. Gottschämmer, A. Riedbrock

Controls of Success	Active and regular attendance of lectures and practicals, presentation of a volcano in a short ($10 - 15$ minute) talk with slides, submission of a scientific essay about their presentation, approx. 8-10 pages, which will be graded.
Requirements	None
Course See module de	escription

Contents

SKIT

Course Code	T-PHYS-107673
Responsible Lecturer	Dr. Ellen Gottschämmer
Part of	M-PHYS-103336 Geophysical Analysis of Natural Hazards
ECTS Credits	4
Language	German
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Course

Semester Course-No.

WS 18/19 4060284

T-PHYS-107673 – Seminar über aktuelle Themen aus der Risikoforschung

	aus der Risikoforschung (Liter- aturseminar)
Controls of Success	Preparation and presentation of a talk based on a scientific publication, critical discussion of the scientific results.
Requirements	None
Course See module d	escription
Contents	

Seminar über aktuelle Themen Seminar (S) 2

Kind

SWS Lecturer

E. Gottschämmer

I-PHYS-107692 – Seminar on IPCC Assessment Report				
Course Code	T-PHYS-107692			
Responsible Lecturer	Prof. Dr. Joaquim Pinto			
Part of	M-PHYS-100951 Components of the Climate System			
ECTS Credits	0			
Language	English			
Course Frequency	Each winter semester			

Coursework ("Studienleistung")

T-PHYS-107692 – Seminar on IPCC Assessment Report

1 semester

Semester Course-No.	Course	Kind	SWS	Lecturer
WS 18/19 4052204	Seminar on IPCC Assessment Re- port	Seminar (S)	2	Joaquim Pinto

Controls of Success Study of a chapter of the current IPCC report with subsequent presentation (~ 20-25 min).

Requirements

Course Causes of climate change and paleoclimate (external and internal influence factors on the climate, results and structure of simple climate models with and without feedbacks, radiation effect and importance of greenhouse gases, results of model projections of the global climate, IPCC process structure and importance for the life on earth).
 The objectives of this Seminar are to provide an evention of the last IBCC Report (sur

The objectives of this Seminar are to provide an overview of the last IPCC Report (currently 2013) and to develop scientific presentation and discussion skills.

Duration

Controls of Success

T-PHYS-107693 – Tropical Meteorology

Course Code	T-PHYS-107693
Responsible Lecturer	Prof. Dr. Peter Knippertz
Part of	M-PHYS-100951 Components of the Climate System
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4052111	Tropical Meteorology	Lectures(V)	2	P. Knippertz
WS 18/19	4052112	Tropical Meteorology	Exercises (Ü)	1	P. Knippertz, M. Maier-Gerber

Coursewor	rk	At least 50% of the points in the exercises
Requireme	ents	None
Course Contents	soons, El Niño	climate of the Tropics (tropical circulation, Hadley and Walker cells, mon- , equatorial waves, Madden-Julian Oscillation, easterly waves, tropical cy- al squall lines).

T-PHYS-107694 – Cloud Physics

Course Code	T-PHYS-107694
Responsible Lecturer	Prof. Dr. Corinna Hoose
Part of	M-PHYS-100952 Atmospheric Processes
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4052081	Cloud Physics	Lectures(V)	2	C. Hoose
WS 18/19	4052082	Cloud Physics	Exercises (Ü)	2	C. Hoose, O. Bruno

Coursewor	'k	At least 50% of the points in the exercises
Requireme	ents	None
Course Contents	warm and col	gy, cloud dynamics of stratiform and convective clouds, micro physics of d clouds, collision and coalescence, primary and secondary ice formation, and depositional growth.

T-PHYS-107695 – Energetics

Course Code	T-PHYS-107695
Responsible Lecturer	Prof. Dr. Andreas H. Fink
Part of	M-PHYS-100952 Atmospheric Processes
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	None

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4052121	Energetics	Lectures (V)	2	A. H. Fink

Coursewor	r k None
Requireme	ents None
Course Contents	Mean meridional circulation, stationary and transient eddies; basic forms, budget equa- tions and transport processes of energy in the atmosphere; principle of available po- tential energy; Lorenz cycle: energy reservoirs and transformation processes, eddy and thermally driven jets (EP flux vectors).
	 Table of content: Literature & Learning goals The Climate System
	 Basic Equations of the Climate System Decomposition of the general circulation
	 Radiation budget and energy transports Consequences of the radiation and surface energy budgets
	Atmospheric water budgetAtmospheric and oceanic energy budget
	Concept of "Available Potential Energy (APE)"

T-PHYS-107696 – Atmospheric Radiation

Course Code	T-PHYS-107696
Responsible Lecturer	PD Dr. Michael Höpfner
Part of	M-PHYS-100952 Atmospheric Processes
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	None

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4052071	Atmospheric Radiation	Lectures (V)	2	M. Höpfner

Coursework	None	
Requirements	None	
Course	Relevance: Weather/Climate, Chemistry, Remote Sensing	
Contents	Short history of light	
	Properties of electromagnetic radiation	
	Radiometric quantities	
	The electromagnetic spectrum	
	Boundary conditions: Sun, Earth's surface; reflection and emission	
	• Radiative transfer in the thermal infrared region: black body radiation, local/ non-local thermodynamic equilibrium, transmission, radiative transfer, applica- tion in remote sensing	
	Molecular spectroscopy, line-broadening	
	Radiative transfer in the UV/Visible: absorption and scattering by particles	
	Single scattering properties: Rayleigh, Mie-approximations	
	Optical phenomena: rainbows, halos	
	• Radiative transfer with multiple scattering: why are clouds white?, two-stream approximation	
	Radiative budget, climate engineering	

T-PHYS-108610 – Turbulent Diffusion

Course Code	T-PHYS-108610
Responsible Lecturer	Dr. Bernhard Vogel
Part of	M-PHYS-100954 Applied Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester Course-No.	Course	Kind	sws	Lecturer
WS 18/19	Turbulent Diffusion	Lectures(V)	2	B. Vogel, H. Vogel
WS 18/19	Turbulent Diffusion	Exercises (Ü)	2	B. Vogel, H. Vogel

Coursework		After a short introduction, the students independently conduct model simulations with ICON-ART. The results are prepared, evaluated with regard to relevant questions, analyzed and presented in the group exercises.
Requirements		None
Course	Propagation c	f air bubbles (relevant trace gases, daily cycles of emissions and concen-
Contents trations, temp		erature history and movements in the lower atmosphere, turbulent diffu-
sion, turbulend		ce parameterization, chemical transformation processes, numerical mod-
els)		

Course Code	T-PHYS-108928
Responsible Lecturer	Prof. Dr. Joaquim Pinto, Dr. Aiko Voigt
Part of	M-PHYS-100951 Components of the Climate System
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Coursework	Coursework ("Studienleistung")

T-PHYS-108928 – Climate Modeling & Dynamics with ICON

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4052151	Climate Modeling & with ICON	& Dynamics Lectures(V)	2	J. Pinto, A. Voigt
WS 18/19	4052152	Climate Modeling & with ICON	& Dynamics Exercises (Ü)	1	N. Albern, G. Pa- pavasileiou

Controls of Success	At least 50% of the points in the exercises
---------------------	---

Requirements

Course Introduction to the ICON model, baroclinic life cycles, cloud impact on large-scale circu-Contents lation of the atmosphere, climate change response of extra tropical jet stream, aerosol impact on tropical rain belts.

Numerical modeling and analysis of climate and climate change (climate system, conceptual models for processes and feedback, chaotic dynamic systems, numerical climate models (EMICS, Global models, regional models), (statistical) analysis methods.

Table of contents:

- Fundamentals of climate modeling
- Introduction to ICON
- Cloud-radiative interactions
- Climate change

Course Code	T-PHYS-108931
Responsible Lecturer	PD Dr. Michael Höpfner
Part of	M-PHYS-100951 Components of the Climate System
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	None

T-PHYS-108931 – Middle Atmosphere in the Climate System

Semester	Course-No.	Course	Kind	SWS	Lecturer	
WS 18/19	4052061	Middle Atmosphere in the Cli- mate System	Lectures (L)	2	M. Höpfner, Sinnhuber	M.

Coursework	
Requirements	5
Requirements Course Contents	 History of science of the middle atmosphere (MA) Mean state of the MA: temperature, wind, chemical composition Radiation: sun, radiative transfer, energy budget, photolysis Measurements: in-situ/remote sounding, ground-based, airborne/balloon, satellite Aerosols: stratospheric background aerosol layer, volcanic enhancement, polar stratospheric clouds, polar mesospheric clouds, meteoric dust Chemistry: general concepts, global ozone layer, polar ozone chemistry Dynamics: fundamental description, meridional circulation, equatorial circulation, waves and tides, stratospheric warmings, tracer and age-of-air, upper troposphere/lower stratosphere, cross-tropopause transport Coupling and climate: chemistry-climate coupling, trends,

T-PHYS-108932 – Ocean-Atmosphere Interactions

Course Code	T-PHYS-108932
Responsible Lecturer	Prof. Dr. Andreas H. Fink
Part of	M-PHYS-100951 Components of the Climate System
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	None

Semester	Course-No.	Course	Kind	SWS	Lecturer
WS 18/19	4052121	Ocean-Atmosphere Interactions	Lectures (L)	2	A. H. Fink

Coursework

Requiremen	ts
Course	Literature
Contents	Learning goals
	Physical and chemical properties of the upper ocean layers
	 Properties of ocean waters
	 Salinity content and density
	 Temperature distribution in the ocean
	 Horizontal salinity distribution in the ocean
	 Vertical salinity distribution
	 Horizontal and vertical density distribution
	 Characteristic water masses in the oceans
	 Dissolved gases in the ocean
	 Molecular transport
	• Properties of humid air
	 Ocean surface and its immediate environment
	Wind-driven ocean surface currents

- Ekman's solution of the equation of motion
- Mass transport associated with the Ekman current
- Up-welling in the ocean
- Sverdrup regime
- Westerly boundary current: Stommel' s contribution
- Munk's solution
- Ocean waves
 - Generation of ocean waves by wind
 - Description of ocean waves
 - Global view on ocean wave climates
 - Ocean wave modeling
 - Ocean wave measurements
- Summary

T-PHYS-108938 – Atmospheric Aerosols

Course Code	T-PHYS-108938
Responsible Lecturer	Dr. Prof. Dr. Ottmar Möhler
Part of	M-PHYS-100952 Atmospheric Processes
ECTS Credits	0
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	sws	Lecturer
WS 18/19	4052041	Atmospheric Aerosols	Lectures(V)	2	O. Möhler,
WS 18/19	4052042	Atmospheric Aerosols	Exercises (Ü)	2	O. Möhler, L.
					Lacher

Coursework

Requirements

CourseGas particle processes (kinetics, diffusion, condensation), aerosol properties (diffusion,Contentscoagulation, sedimentation, impaction), aerosol thermodynamics (chemical potential,
solubility, crystallization), aerosol cloud processes (Köhler theory, ice nucleation).

63

T-PHYS-109133 – Remote Sensing of Atmospheric State Variables

Course Code	T-PHYS-109133
Responsible Lecturer	Prof. Dr. Johannes Orphal, Dr. Björn-Martin Sinnhuber
Part of	M-PHYS-100953 Experimental Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer	
SS 19	4052151	Remote Sensing of Atmospheric State Variables	: Lectures(V)	2	J. Orphal, B. Sinnhuber	5M.
SS 19	4052152	Remote Sensing of Atmospheric State Variables	c Exercises (Ü)	1	J. Orphal, B. Sinnhuber	5M.

Coursework		
Requirement	S	
Course	•	physical basics
Contents	•	radiation transfer
	•	inverse methods
	•	basics of satellite remote sensing
	•	techniques and applications

T-PHYS-109135 – Advanced Practical Course

Course Code	T-PHYS-109135
Responsible Lecturer	Prof. Dr. Ch. Kottmeier
Part of	M-PHYS-100953 Experimental Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester Co	ourse-No.	Course	Kind	SWS	Lecturer
SS 19 40		Advanced Meteorological Practi- cal Course	Practicals (Pr)	5	C. Kottmeier, R. Wagner, M.
					Höpfner, M. Kohler

tions. From each experiment, a protocol is created from a sci		The students conduct experiments in small groups according to instruc- tions. From each experiment, a protocol is created from a scientific point of view. The practical is passed, if all protocols have been accepted by the supervisors.			
Requireme	ents	None			
Course	Availab	able experiments include:			
Contents	•	atmospheric measurements with gliders (IMK-TRO)			
	•	surface energy balance (IMK-TRO)			
	•	infrared spectroscopy (IMK-ASF)			
	•	AIDA cloud and aerosol chamber (IMK-AAF)			

T-PHYS-109136 - Field Trip

Course Code	T-PHYS-109135
Responsible Lecturer	Prof. Dr. Christoph Kottmeier
Part of	M-PHYS-100953 Experimental Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 19	4052263	Field Trip	Excursion (E)	2	P. Knippertz, J. Pinto, C. Kottmeier, M. Kunz

		The students work on and present assigned topics within the excursion group in order to prepare themselves and the group specifically for visits at research institutes and observatories.
Requireme	ents	None
Course		
Contents	Germany and	neighbouring countries.

Course Code	T-PHYS-109139
Responsible Lecturer	Prof. Dr. Peter Knippertz
Part of	M-PHYS-100954 Applied Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	None

T-PHYS-109139 – Advanced Numerical Weather Prediction

Semester	Course-No.	Course	Kind	SWS	6 Lecturer
SS 19	4052051	Advanced Numerical Weather Prediction	Lecture (V)	2	P. Knippertz

Coursework	None
Requirements	None
Course	Introduction
Contents	Parametrisations
	Data assimilation
	Ensemble predictions
	Verification
	Post-processing

T-PHYS-109140 – Meteorological Hazards

T-PHYS-109140
Prof. Dr. Michael Kunz
M-PHYS-100954 Applied Meteorology
0
English
irregular
1 semester
None

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 18	4052121 Meteorological Hazards		Lecture (V)	2	M. Kunz

Coursework None		None	
Requireme	ents	None	
Course	Meteo	rological natural haza	rds such as:
Contents	•	extreme events,	
	•	extra tropical and tr	opical cyclones,
	convection,		
	• thunderstorms,		
	•	super cells,	
	•	tornadoes,	
	•	convective storm gu	ists,
	• derechos,		
	•	hail,	
	•	climate change	

This course will not be offered in the summer semester 2019.

T-PHYS-109141 – Energy Meteorology

Course Code	T-PHYS-109141
Responsible Lecturer	Prof. Dr. Joaquim Pinto
Part of	M-PHYS-100954 Applied Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 19	4052191	Energy Meteorology	Lecture (V)	2	S. Emeis, M. Schroedter-Hom- scheidt, J. Pinto

Coursework		
Requirements		
Course	Overview Energy Meteorology	
Contents	Physical basics – Wind energy	
	Physical basics of energy supply	
	Economic basics of energy supply	
	Onshore and offshore wind parks	
	Wind energy siting – complex terrain	
	Physical basics – Solar energy	
	Tracking and concentrating solar systems	
	Wind measurements	
	Radiation forecasts	
	Wind energy – yield forecasts	
	Climate change & energy system	
	Community energy meteorology and where to work	

T-PHYS-109142 – Methods of Data Analysis

Course Code	T-PHYS-109142
Responsible Lecturer	Prof. Dr. Joaquim Pinto
Part of	M-PHYS-100954 Applied Meteorology
ECTS Credits	0
Language	English
Course Frequency	Each summer semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

Semester	Course-No.	Course	Kind	SWS	Lecturer
SS 19	4052171	Methods of Data Analysis	Lecture (V))	2	J. Pinto, P. Knip- pertz, S. Lerch
SS 19	4052172	Methods of Data Analysis	Exercises (Ü)	1	J. Pinto, P. Knip- pertz, S. Lerch, F Ehmele

Controls of Suc	cess	At least 50% of the points in the exercises
Requirements		None
Course	1.	Basics
Contents	2.	Significance testings
	3.	Regression
	4.	Time series
	5.	Fourier wavelet analysis
	6.	Spatial analysis
	7.	Clustering
	8.	Machine Learning
	9.	Summary

Course Code	T-PHYS-109177
Responsible Lecturer	Prof. Dr. Thomas Leisner
Part of	M-PHYS-104488 Physics of Planetary Atmospheres
ECTS Credits	8
Language	English
Course Frequency	Each winter semester
Duration	1 semester
Controls of Success	Coursework ("Studienleistung")

T-PHYS-109177 – Physics of Planetary Atmospheres, Prerequisite

Semester	Course-No.	Course	Kind	sws	Lecturer
WS 18/19	4052161	Physics of Planetary Atmos- pheres	Lecture (V)	2	T. Leisner
WS 18/19	4052162	Physics of Planetary Atmos- pheres – Exercises	Exercises (Ü)	2	T. Leisner, A. Ab- delmonem

Controls of	f Success	At least 50% of points in exercises
Requireme	ents	None
Course	The Course give	ves a broad introduction into the formation and properties of planets and
Contents	their atmosph	neres and tries to constrain possible planetary atmospheres by applying
	fundamental	principles of physics. In this respect, the module will focus on the plane-
	tary atmosphe	eres in our solar system. Moreover, recently developed methods for the
	remote sensir	ng of extra solar planets are introduced and the current understanding of
	their atmosph	eres is presented. A focus is the energy budget of planetary atmospheres,
	where clouds	play a central role. Their formation and growth will be covered in a gener-
	alized fashion.	

T-PHYS-109616 – Master's Thesis

Semester Course-No.	Course Kind SWS Lecturer
Controls of Success	
Controls of Success	Written report (Master's thesis) and presentation (SPO §24)
Course Frequency	Each semester
Duration	1 semester
Language	English or German. On agreement with the examiner(s), the Master's Thesis can also be written in other languages.
Workload	840 hours
ECTS Credits	30
Part of	M-PHYS-100956 – Master's Thesis
Responsible Lecturer	Prof. Dr. Peter Knippertz
Course Code	T-PHYS-109616– Master's Thesis

Controls of Success	The assessment is based on § 14 SPO Master's Meteorology and consists of the evaluation of the Master's Thesis and the related presentation by at least one professor, one habilitated scientist of the KIT-Faculty of Physics or one leading scientist in accordance with § 14 Abs. 3 para. 1 KITG and one other examiner. The overall assessment will be recorded in a written report. The evaluation period shall not exceed eight weeks upon submission of the Master's thesis.
Requirements	Students have successfully completed all four module exams in the sub- jects Atmospheric and Climate Processes and Applied and Experimental Meteorology. Soft skills and Supplementary Modules can be in progress.
Course Contents	See module description

Course Code	T-PHYS-109902– Integrated Atmospheric Measurements
Responsible Lecturer	Prof. Dr. Chr. Kottmeier
Part of	M-PHYS-100953 – Experimental Meteorology
ECTS Credits	0
Language	English
Duration	1 semester
Course Frequency	Each Summer semester
Controls of Success	Coursework ("Studienleistung")

T-PHYS-109902 – Integrated Atmospheric Measurements

Semester	Course-No.	Course	Kind	sws	Lecturer
SS 19	4052131	Integrated Atmospheric Mea- surements	Lecture (L)	2	C. Kottmeier
Controls of Success		Short presentation on selected contents (approx. 20 min)			
Requirements		None			
Course Contents		Brief Introduction to advanced atmospheric observation techniques like eddy covariance measurements, Doppler Lidar, Doppler Radar and air- craft measurements. Principle and objectives of Integrated Observation. Examples of Integrated Observation from Polar Research, Convection Studies and Orographic Flow analysis.			

This course will be offered for the first time in the summer semester 2019.

IV Guidelines to Master's Thesis

In the following, the most important steps and necessary formalities related to the compilation and submission of the Master's thesis are described. The description comprises the closely interlinked modules "Specialization Phase" and "Master's Thesis", thus two semesters or a 12-month period. It is a guideline, not a legally binding regulation document. Questions can be directed to Andreas Fink (andreas.fink@kit.edu) or Katharina Maurer (katharina.maurer@kit.edu).

1. Finding a topic and supervisor

The "standard" case is that you will obtain a topic and supervisor from the <u>list</u> at our <u>homepage</u>. Please approach the respective supervisor(s) for more details in case you are interested. Please note that it is possible to chose topics that were not listed under the above-mentioned URL. In this case, approach professors, "Privatdozenten", and group leaders directly.

In this context, it shall be noted that the Institute of Meteorology and Climate Research (IMK) has three departments: **TRO** focuses on the troposphere, **AAF** on aerosols, **ASF** on atmospheric trace gases and remote sensing. Master theses can be written in all three departments.

2. Registration and Deadlines

Before the start of the module *Specialization Phase*, students need to personally visit the Examination Office of the KIT Faculty of Physics:

Prüfungssekretariat, Ms. Anja Müller

Physics Building 30.21, 9th floor, Room 9-13;

email: pruefungssekretariat@physik.kit.edu

Phone 0721 608-43438

If all requirements are met, a signed and stamped form will be issued.

Students use this form to contact their Advisor to discuss and fill in, amongst others, the fields "Advisor/ Co-Advisor", "Preliminary title of thesis", and "Start of the thesis".

The Advisor signs the form and sends it back to the Examination Office.

The Examination Office will register the thesis in the Campus Management System with the preliminary working title, the advisors and the start date. The deadline for submission of the thesis is calculated by the system and monitored by the Examination Office (12 months after starting date). These information are visible for the student in the <u>Campus student portal</u>. The following points are worthy of note:

- The application for the Master's thesis will be accepted by Ms. Müller, if all four meteorology
 modules of the 1st and 2nd MSc semester are entered in the Campus Management System. The
 modules Soft Skills and Complementary Elective may still be incomplete and should be
 completed in the course of the Specialization Phase.
- If the oral module exam has already been passed in one or more of the meteorological modules but has not yet been entered, an e-mail from the Responsible Lecturer to Ms. Müller, confirming the successful completion of the module, is sufficient.
- Important: If one of the four Master modules has not been passed because course components ("Teilleistungen") have not yet been completed and therefore the prerequisites for the oral examination have not yet been met, please speak to the study advisor Prof. Dr. Andreas H. Fink, to prevent an unnecessary delay of the study by one semester.
- Deadline extensions are handled very restrictively and are only possible in justified individual cases.

3. The module Specialization Phase

Formally, the first six months of final thesis work belong to the module *Specialization Phase*. In these six months, a seminar will be given in the *Seminar on the Specialization Phase ("Studierendenseminar")* in the context of the *Scientific Concept Development*. It should be noted that this seminar must be given in the *"Studierendenseminar"* that usually takes place during the lecture period on Wednesdays from 15:45-17:15 o'clock. Suggestions for dates and seminar titles should be sent to <u>Kathi Maurer</u>, ideally before the semester starts. The current <u>seminar-calendar</u> can be found on the website.

<u>Important:</u> Please register in the Campus Management System before the seminar on the S*pecialization Phase.* Formally, this is possible when 3 of the 4 master modules in meteorology in the Campus Management System have been passed.

The seminar talk should take 20-25 minutes, followed by a discussion. The total duration should not exceed 45 minutes. After the seminar, there should be a feedback discussion with the Advisors and the Supervisor, in which the progress made so far is evaluated and next steps are discussed.

Advisors or Supervisors sign a form, which documents the presentation of the lecture with date and title.

Please forward the signed form to Mrs. Stenschke or Prof. Knippertz, who will enter the S*pecialization Phase* in the Campus Management System.

4. The module *Master's Thesis*

Within the 12-month period, the Master's thesis is to be submitted to Ms. Müller as a written scientific paper.

<u>Five</u> bound copies must be made, with three copies being submitted to Ms. Müller, all three signed by the first Examiner with a text like for example:

"Accepted as an examination copy."

<u>Please note: With this signature the first examiner declares that the work is graded at least with a mark of 4.0!</u> If doubts as to the latter grading exists, the examiner will write on all three copies a text like:

"Inspection copy."

Ms. Müller confirms the receipt of the copies, which are then submitted to the first and second Examiners and on the basis of which the reports are prepared. This delivery is relevant for the 12-month deadline.

Please give the fourth and fifth bound copy to Frau Schönbein for the library at Campus South and the DWD library. Please send a PDF of the submitted work to <u>Mr. Brückel, the IT administrator at Campus South</u>. This PDF file is available for free download on the *IMK* website pending on the consent of the Advisor.

After submission, a 20-25 minute seminar must be held in the respective seminars of the department TRO, ASF, or AAF (cf. Section 4.1), where the thesis was written. This seminar can be held after the 12-month

period and should take place at one of the next possible dates. <u>Note</u>: This final seminar can only take place during the lecture period.

After the seminar, a <u>form</u> must be completed, signed by the Advisor and the Co-Advisor or Supervisor and sent to Ms. Stenschke. The reports will be prepared by the Advisors only after the final presentation, as this is part of the assessment and is included in the evaluation.

Glossary

- Advisor ("Berichterstatter or" Gutachter"): This is usually a professor or a "Privatdozent" who acts as the first examiner.
- **Co-Advisor ("Zweitgutachter"):** This is usually a professor or a "Privatdozent" who acts as the second examiner.
- **Supervisor ("Betreuer"):** He/she supervises the Master Student, is often the Advisor or Co-Advisor, but can also be research staff (see also "group leader").
- **"Privatdozent":** This is an habilitated staff member. He can act as an Advisor. However, the second examiner must be a full professor in this case. This is also true for so-called "apl. Professor".
- Group Leader ("Gruppenleiter"): Group leaders in Campus North are senior scientists. They can act as Supervisors, but not as Advisors if they are not habilitated or are an "apl. Professor" (please see "Privatdozent").
- **"Responsible Lecturer":** This is the "Modulverantwortliche" who enters the final grade of his/her module into the Campus Management System.
- **"Examination Office" ("Prüfungssekretariat"):** This is the "Prüfungssekretariat" of the Faculty of Physics. The Examination Office is currently managed by Ms. Müller.
- Campus Management System (CAS): Amongst others, results of modules are entered in CAS.
- **"Course Component":** This is the so-called "Teilleistung", often a lecture.
- **"Seminar on the Specialization Phase":** This is also referred to as "Studierendenseminar", in which also BSc students give their talks. It is currently scheduled on Wednesdays 15:45-17:15 hours.

