

Karlsruhe Institute of Technology

Temporal variability of severe convective storms connected with hail events across Europe and their relevant drivers

Susanna Mohr^{1,2} (mohr@kit.edu), D. Piper¹, J. Wandel¹, O. Martius^{3,4,}, M. Kunz^{1,2}

¹Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ²Center for Disaster Management and Risk Reduction Technology (CEDIM), Karlsruhe, Germany ³University of Bern, Oeschger Centre for Climate Change Research and Institute of Geography, Switzerland ⁴University of Bern, Mobiliar Lab for Natural Risks, Switzerland

Due to a lack of long-term, reliable, and consistent information about the occurrence

of severe convective storms (SCS) in Europe – especially those **connected with hail events** – we have developed methodologies that enables to indirectly estimate thunderstorm and hail probability from numerical weather prediction or climate models. Using these two approaches, we investigated the temporal and spatial variability of convective predisposition and hail potential over past decades and identified large-scale atmospheric processes (e.g., teleconnection patterns, SST, blocking) that determine the spatiotemporal variability of SCS.

Conclusions

X Little or no trend in PHI and *convection-favoring* weather types for most of the grid points (1951–2010/2014); but high annual variability of the conditions that favor severe convective events including hail.

K Regarding weather pattern: Most regions feature **positive trends** for **thermodynamic** and

- **negative trends** for **dynamic** quantities: Positive trends for thermodynamic parameters, negative trends for lifting (not shown).
- **X** Large-scale mechanism like **teleconnections** (e.g., NOA, EA) or **SST** substantially **impact** localscale convective activity in Europe: e.g. increased convective activity during NAO- and EA+.
- **×** Several simultaneous peaks in EA/SST time series and days with convection-favoring conditions.
- **X** Areas with **blocking activity** over the **eastern North Atlantic** (reduction) and **Scandinavia** influence (increasing) thunderstorm activity in western/central Europe. Reasons are resulting condition for the upper flow, moisture transport and stability conditions.

Fig. 1: Median of the annual (summer) Potential Hail Index (PHI; coastDat2, 1951–2010, JJA; Mohr et al., 2015).

Fig. 2: (a) Mean annual frequency (days) of convection*favoring* (WMUA) conditions (coastDat2, 1958–2014, SHY; Piper, 2017; Piper et al., in prep).

Fig. 4: Correlation coefficient (Dijon, Milan) and all other grid points (Mohr et al., 2015).

0.2

Sea surface

temperature

ratio

patterns during the 30-years period 1985–2014 (Piper, 2017).

Relevant drivers

What are the large-scale atmospheric processes influencing the temporal and spatial variability?

Atmospheric

blocking

Fig. 7: Relationship between the North Atlantic Oscillation (NAO) index and thunderstorm days (based on lightning detections; EUCLID between 2001–2014). Presented is the relative deviation of the monthly number of thunderstorm days (anomaly) calculated with respect to months with an North Atlantic Oscillation (NAO) index greater than +1 (NAO+) and less than -1 (NAO-; left) and results from a bootstrap significance test (right; Piper and Kunz, 2017).

Fig. 9: Time series of convection-favoring weather patterns for different areas and annually averaged EA-Index (left) and sea surface temperature (SST) over the Bay of Biscay (right; Piper, 2017; Piper et al., in prep).

Fig. 10: Relevant areas, where the occurrence of blocking influence the thunderstorm days (BLUE = reduction; RED = increasing) in certain parts of western and central Europe (see Fig. 11; Mohr et al., in prep)

Mahlstein, I., Martius, O., Chevalier, C. and Ginsbourger, D. (2012) Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett., 39, L22805.

Mohr, S., M. Kunz, and B. Geyer (2015): Hail potential in Europe based on a regional climate model hindcast. Geophys. Res. Lett., 42, 10904-10912.

Mohr, S., Wandel, J., Lenggenhager, S., and Martius, O. (In prep): Relationship between blocking and thunderstorm activity in western and central Europe (In preperation).

significant (Si = 95%)

significant

Piper, D. (2017): Untersuchung der Gewitteraktivität und der relevanten großräumigen Steuerungsmechanismen über Mittel- und Westeuropa. Wiss. Berichte des Instituts für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie No. 73, KSP, Karlsruhe, Germany (Phd thesis in German).

Piper, D. and Kunz, M. (2017): Spatiotemporal variability of lightning activity in Europe and the relation to the North Atlantic Oscillation teleconnection pattern, Nat. Hazards Earth Syst. Sci., 17, 1319–1336, doi:10.5194/nhess-17-1319-2017, 2017.

Piper, D., Kunz, M., Allen, J. T., und Mohr, S. (In prep): Thunderstorm activity across Central and West Europe related to large-scale weather patterns. Q. J. R. Meteor. Soc. (In preperation).

KIT – The Research University in the Helmholtz Association

