

Karlsruhe Institute of Technology

EDIM Stiftung Umwelt und Schadenvorsorge

Changes in the Hail Potential Over Past and Future Decades using a Logistic Hail Model

Susanna Mohr (mohr@kit.edu) & Michael Kunz

Institute for Meteorology and Climate Research (IMK-TRO)

Problems

× Large increase of 'hail <u>damage</u>' in Southern Germany during the last decades.

Logistic Hail Model

- × Significant increase of the convective potential in Central Europe during the last decades (Mohr and Kunz, 2013).
- **×** The local-scale extent and a lack of appropriate monitoring systems hampers statistical analyses of hail probability.
- SLI $\ge 90\%$ significance $\bigcirc \geq 80\%$ significance) no significance Fig. 1: Linear trends for the 90% (10%) percentiles of CAPE (SLI) from soundings between 1978 and 2009. *Red (blue) indicates increase* (decrease) in convective potential (Mohr and Kunz, 2013).

How can the diagnostic of hail events be improved?

Method: Development / calibration of a logistic regression model using high-resolution reanalysis (CCLM-ERA40; Berg et al., 2012) and building insurance data of SV Sparkassen Versicherung for Baden-Wuerttemberg (SW Germany; 1992 – 2000). Z Sparkassen Versicherung

Logistic Hail Model (LHM):

 $p_{\text{hail}} = \frac{1}{1 + e^{-g_{\text{hail}}(x)}} \quad \text{with } 0 \le p(x) \le 1$ $g_{\text{hail}} = \beta_0 + \beta_1 \cdot \text{SLI} + \beta_2 \cdot \text{T}_{\min} + \beta_3 \cdot \text{T}_{2m} + \beta_4 \cdot \text{OWT}$

considering:

- Surface-based Lifted Index at 12 UTC (SLI)
- Minimum near-surface temperature in the morning (T_{min})
- Near-surface temperature at 12 UTC (T_{2m})
- Hail—related and hail—unrelated weather types (OWT)

< 0.2 , day without hail ≥ 0.2 , day with hail whereas $p_{hail} =$

Validations of LHM:

Good agreement with insured losses and hail signals derived from radar data (Puskeiler, 2013).

PHI in the Future

What changes in the hail potential can be expected in the Future?

Fig. 2: Validation of the LHM with the Heidke Skill Score (HSS) between a high-resolution regional climate model driven by ERA-Interim and insurance data (2001 – 2008; *left) and hail events from radar data (2005)* – 2008; right; Mohr et al. 2014a).

increase in the future, but only in the northwest and south of Germany statistically significantly.

2000 represented by an ensemble of seven climate simulations: (a) Number of runs showing an increase and (b) changes when at least five of the seven runs show a significant increase (or decrease) according to the Wilcoxon rank-sum test (Mohr et al., 2014a).

What is climatology of PHI in Europe?

PHI in Europe

- **×** Results of a reduced logistic hail model confirm several hail relevant regions known from literature.
- **×** PHI shows high annual variability and with a periodicity around 35 – 40

What is the average of PHI in Germany?

Climatology of PHI

- X North-to-south gradient in the hail probability
- **×** Largest number of potential hail days occurring in the South.

Fig. 3:

Median of the annual PHI (June to August) derived from a high-resolution regional climate model driven by ERA40 (1971 – 2000; Mohr et al. 2014a).

× Improvement of hail diagnostic by development of a logistic hail

Conclusions

model and development of a new index: **Potential Hail Index (PHI)**.

- Climatology of PHI shows a markedly north-to-south gradient with the highest hail potential occurring in Southern Germany.
- × Increasing hail potential in the future, but only in the northwest and south of Germany statistically significant.

× A modified version of the logistic hail model identifies well-known hail regions in Europa.

Fig. 7:

Time series (and their moving 10 year average) of the mean annual PHI near five cities in Europe (3x3 grid points) with mean and standard deviation.; Mohr et al., 2014b).

Berg, P., Wagner, S., Kunstmann, H. & Schädler, G., 2012: High resolution RCM simulations for Germany: Part I – validation. Clim. Dyn., 1–2, 1–14.

- Mohr, S. and Kunz, M. (2013): Recent trends and variabilities of convective parameters relevant for hail events in Germany and Europe. Atmos. Res., 123, 211–228.
- Mohr, S. (2013): Änderung des Gewitter- und Hagelpotentials im Klimawandel. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie, Vol. 58, Karlsruhe, Germany (ISBN 978-3-86644-994-7).
- Mohr, S., Kunz, M. and Keuler, K. (2014a): Changes in the Hail Potential Over Past and Future Decades: Using a Logistic Hail Model. J. Geophys. Res. (Submitted).

Mohr, S., Kunz, M. and Geyer, B. (2014b): Hail Potential in Europe based on a regional climate model hindcast. Geophys. Res. Lett. (In preparation).

Puskeiler, M. (2013): Radarbasierte Analyse der Hagelgefährdung in Deutschland, Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie, Vol. 59, Karlsruhe, Germany (ISBN 978-3-7315-0028-5).

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Projekt HARIS-CC "Hail Risk and Climate Change"

